1,368 research outputs found
Recommended from our members
The suitability of infrared temperature measurements for continuous temperature monitoring in gilts
The aim of this study was to evaluate whether an infrared thermometer, a pyrometer, could detect the body surface temperature in the orbital area of gilts without contacting them. Furthermore, it was tested whether an increase in the gilts' temperatures could be detected. Therefore, fever was induced. During 11 trials, 43 German Landrace gilts were injected with either a Porcilis AR-T DF (Intervet International B.V., Boxmeer, Netherlands) vaccine or 2 ml of 0.9 % NaCl. A commercial temperature logger (TRIX-8, LogTag Recorders, Auckland, New Zealand) was placed in the vagina to record temperature data every 3 min. The pyrometer (optris cs, Optris, Berlin, Germany) was aimed at where the orbital area of the gilts would be. While they were drinking, temperature measurements were done in that site by the pyrometer. Time periods from 0.25 to 6 h were analysed. Considering the 0.25-h period, a positive correlation (ρ=0.473) between temperatures of the logger and the pyrometer was found for 15 of 39 gilts. The longer the chosen measuring period was, the fewer animals showed a significant correlation between the two temperatures. In contrast to the vaginal logger, the pyrometer cannot detect an increase in the body temperature in all fever-induced gilts. In conclusion, a pyrometer cannot detect the body surface temperature reliably. An increase in the body surface temperature over a short time period (on average 5 h) could not be detected by the pyrometer. The temperature increase measured using the pyrometer was too low and time-delayed compared to the temperature detected by the vaginal logger
Origin of Spin Incommensurability in Hole-doped S=1 Chains
Spin incommensurability has been recently experimentally discovered in the
hole-doped Ni-oxide chain compound (G. Xu {\it
al.}, Science {\bf 289}, 419 (2000)). Here a two orbital model for this
material is studied using computational techniques. Spin IC is observed in a
wide range of densities and couplings. The phenomenon originates in
antiferromagnetic correlations ``across holes'' dynamically generated to
improve hole movement, as it occurs in the one-dimensional Hubbard model and in
recent studies of the two-dimensional extended t-J model. The close proximity
of ferromagnetic and phase-separated states in parameter space are also
discussed.Comment: RevTex, 4 pages, 4 figures (eps
Exact Gravity Dual of a Gapless Superconductor
A model of an exact gravity dual of a gapless superconductor is presented in
which the condensate is provided by a charged scalar field coupled to a bulk
black hole of hyperbolic horizon in asymptotically AdS spacetime. Below a
critical temperature, the black hole acquires its hair through a phase
transition while an electromagnetic perturbation of the background Maxwell
field determines the conductivity of the boundary theory.Comment: 21 pages, 8 figures, a section on the stability of the MTZ black hole
is added, references are added, version to be published in JHE
Role of loop entropy in the force induced melting of DNA hairpin
Dynamics of a single stranded DNA, which can form a hairpin have been studied
in the constant force ensemble. Using Langevin dynamics simulations, we
obtained the force-temperature diagram, which differs from the theoretical
prediction based on the lattice model. Probability analysis of the extreme
bases of the stem revealed that at high temperature, the hairpin to coil
transition is entropy dominated and the loop contributes significantly in its
opening. However, at low temperature, the transition is force driven and the
hairpin opens from the stem side. It is shown that the elastic energy plays a
crucial role at high force. As a result, the phase diagram differs
significantly with the theoretical prediction.Comment: 9 pages, 8 figures; J. Chem. Phys (2011
Constraints on massive gravity theory from big bang nucleosynthesis
The massive gravity cosmology is studied in the scenario of big bang
nucleosynthesis. By making use of current bounds on the deviation from the
fractional mass, we derive the constraints on the free parameters of the
theory. The cosmological consequences of the model are also discussed in the
framework of the PAMELA experiment.Comment: 5 page
Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor
Most holographic models of superconducting systems neglect the effects of
dynamical boundary gauge fields during the process of spontaneous
symmetry-breaking. Usually a global symmetry gets broken. This yields a
superfluid, which then is gauged "weakly" afterwards. In this work we build
(and probe the dynamics of) a holographic model in which a local boundary
symmetry is spontaneously broken instead. We compute two-point functions of
dynamical non-Abelian gauge fields in the normal and in the broken phase, and
find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave
superconductor in (1+1) dimensions. The ground state of this model also breaks
(1+1)-dimensional parity spontaneously, while the Hamiltonian is
parity-invariant. We discuss possible implications of our results for a wider
class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added
(section 3.1), improved presentation, version accepted by JHEP; v2: paragraph
added to discussion, figure added, references added, typos correcte
Holographic superfluids as duals of rotating black strings
We study the breaking of an Abelian symmetry close to the horizon of an
uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary
theory living on R^2 x S^1 has no rotation, but a magnetic field that is
aligned with the axis of the black string. This boundary theory decribes
non-rotating (2+1)-dimensional holographic superfluids with non-vanishing
superfluid velocity. We study these superfluids in the grand canonical ensemble
and show that for sufficiently small angular momentum of the dual black string
and sufficiently small superfluid velocity the phase transition is 2nd order,
while it becomes 1st order for larger superfluid velocity. Moreover, we observe
that the phase transition is always 1st order above a critical value of the
angular momentum independent of the choice of the superfluid velocity.Comment: 9 pages including 5 figures: v2: 12 pages including 7 figures; 2
figures added, discussion on free energy added; accepted for publication in
JHE
- …