58 research outputs found

    Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    Get PDF
    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell-intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity

    Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose

    Get PDF
    N.R.J. was supported by a Diabetes UK RW and JM Collins Studentship (12/0004601). J.B. was supported by a European Foundation for the Study of Diabetes (EFSD) Albert Renold Young Scientist Fellowship and a Studienstiftung des deutschen Volkes PhD Studentship. D.T. was supported by an Advanced Grant from the European Research Commission (268795). G.A.R. was supported by Wellcome Trust Senior Investigator (WT098424AIA) and Royal Society Wolfson Research Merit Awards, and by MRC Programme (MR/J0003042/1), Biological and Biotechnology Research Council (BB/J015873/1), and Diabetes UK Project (11/0004210) grants. G.A.R. and M.W. acknowledge COST Action TD1304 Zinc-Net. D.J.H. was supported by Diabetes UK R.D. Lawrence (12/0004431), EFSD/Novo Nordisk Rising Star and Birmingham Fellowships, a Wellcome Trust Institutional Support Award, and an MRC Project Grant (MR/N00275X/1) with G.A.R. D.J.H and G.A.R. were supported by Imperial Confidence in Concept (ICiC) Grants. J.F. was supported by an MRC Programme grant (MR/L02036X/1). L.P. provided human islets through collaboration with the Diabetes Research Institute, IRCCS San Raffaele Scientific Institute (Milan), within the European islet distribution program for basic research supported by JDRF (1-RSC-2014-90-I-X). P.M. and M.B. were supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 155005 (IMIDIA), resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution, and by the Italian Ministry of University and Research (PRIN 2010-2012). D.B. and E.B. provided human islets through the European Consortium for Islet Transplantation sponsored by JDRF (1-RSC-2014-100-I-X)

    Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells.

    No full text
    How does cyclic AMP potentiate insulin secretion from pancreatic islet beta-cells? This question is fundamental to understanding how hormones such as glucagon, which elevates cAMP, stimulate insulin secretion and so contribute to the normal secretory response of the islet. It is well established that a rise in the cytoplasmic Ca2+ concentration ([Ca2+]i) is essential for insulin secretion and therefore cAMP has been proposed to act by elevating [Ca2+]i. But studies on permeabilized beta-cells indicate that cAMP increases insulin release even when [Ca2+]i is held constant. We have used microfluorimetry and the patch-clamp technique to measure changes simultaneously in Ca2+ currents, [Ca2+]i and exocytosis in a single beta-cell in response to cAMP. We show here that cAMP, through activation of protein kinase A, increases Ca(2+)-influx through voltage-dependent L-type Ca2+ channels, thereby elevating [Ca2+]i and accelerating exocytosis. More importantly, cAMP also promotes insulin release by a direct interaction with the secretory machinery, which accounts for as much as 80% of its effect

    The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells.

    No full text
    1. We have examined the effects of diazoxide and intracellular ATP (ATPi) on whole-cell currents in HEK293 cells transfected transiently with the inwardly rectifying K+ channel Kir6.1 (uKATP1) or cotransfected with Kir6.1 and the sulphonylurea receptor (SUR1). 2. Kir6.1 currents were unaffected by the K+ channel opener diazoxide or by dialysis with 0.3 mM ATPi. 3. Kir6.1-SUR1 currents increased in amplitude when cells were dialysed with 0.3 mM ATP, but not with 5 mM ATP. This activation may be explained by the loss of endogenous ATP from the cell when the intracellular solution contains 0.3 mM ATP. Kir6.1-SUR1 currents were also activated by diazoxide; this activation was greater with 0.3 mM ATP1 than with 5 mM ATP1. 4. We conclude that SUR1 is required to confer both diazoxide and ATP sensitivity on Kir6.1

    Inhibition of ATP-regulated K(+)-channels by a photoactivatable ATP-analogue in mouse pancreatic beta-cells.

    No full text
    The effects of a photoactivable (DMNPE-caged) ATP-analogue on ATP-regulated K(+)-channels (KATP-channel) in mouse pancreatic beta-cells were investigated using the inside-out patch configuration of the patch-clamp technique. The caged precursor caused a concentration-dependent reduction of channel activity with a Ki of 17 microM; similar to the 11 microM obtained for standard Mg-ATP. The small difference in the blocking capacity between the precursor and ATP is probably the reason why no change in channel activity was observed upon photolysis of the caged molecule and liberation of ATP. It is suggested that the part of the ATP molecule involved in the blocking reaction of the KATP-channel is not sufficiently protected in DMNPE-caged ATP making this compound unsuitable for studying the rapid kinetics of ATP-induced KATP-channel inhibition

    Inhibition of L-type calcium channels by internal GTP [gamma S] in mouse pancreatic beta cells.

    No full text
    Pretreatment of pancreatic beta cells with pertussis toxin resulted in a 30% increase in peak whole-cell Ca2+ currents recorded in the absence of exogenous intracellular guanine nucleotides. Intracellular application of 90 microM GTP[gamma S], by liberation from a caged precursor, resulted in 40% reduction of the peak Ca2+ current irrespective of whether the current was carried by Ca2+ or Ba2+. Effects on the delayed outward K+ current were small and restricted to a transient Ca(2+)-dependent K+ current component. Inhibition by GTP[gamma S] of the Ca2+ current was not mimicked by standard GTP and could not be prevented either by pretreatment with pertussis toxin or by inclusion of GDP[beta S] or cyclic AMP in the intracellular medium. The inhibitory effect of GTP[gamma S] could be counteracted by a prepulse to a large depolarizing voltage. A similar effect of a depolarizing prepulse was observed in control cells with no exogenous guanine nucleotides. These observations indicate that inhibition of beta cell Ca2+ current by G protein activation results from direct interaction with the channel and does not involve second-messenger systems. Our findings also suggest that the beta cell Ca2+ current is subject to resting inhibition by G proteins

    Inhibition of L-type calcium channels by internal GTP [gamma S] in mouse pancreatic beta cells.

    No full text
    Pretreatment of pancreatic beta cells with pertussis toxin resulted in a 30% increase in peak whole-cell Ca2+ currents recorded in the absence of exogenous intracellular guanine nucleotides. Intracellular application of 90 microM GTP[gamma S], by liberation from a caged precursor, resulted in 40% reduction of the peak Ca2+ current irrespective of whether the current was carried by Ca2+ or Ba2+. Effects on the delayed outward K+ current were small and restricted to a transient Ca(2+)-dependent K+ current component. Inhibition by GTP[gamma S] of the Ca2+ current was not mimicked by standard GTP and could not be prevented either by pretreatment with pertussis toxin or by inclusion of GDP[beta S] or cyclic AMP in the intracellular medium. The inhibitory effect of GTP[gamma S] could be counteracted by a prepulse to a large depolarizing voltage. A similar effect of a depolarizing prepulse was observed in control cells with no exogenous guanine nucleotides. These observations indicate that inhibition of beta cell Ca2+ current by G protein activation results from direct interaction with the channel and does not involve second-messenger systems. Our findings also suggest that the beta cell Ca2+ current is subject to resting inhibition by G proteins

    Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes.

    No full text
    1. We have studied the electrophysiological properties of cloned ATP-sensitive K+ channels (KATP channels) heterologously expressed in Xenopus oocytes. This channel comprises a sulphonylurea receptor subunit (SUR) and an inwardly rectifying K+ channel subunit (Kir). 2. Oocytes injected with SUR1 and either Kir6.2 or Kir6.1 exhibited large inwardly rectifying K+ currents when cytosolic ATP levels were lowered by the metabolic inhibitors azide or FCCP. No currents were observed in response to azide in oocytes injected with Kir6.2, Kir6.1 or SUR1 alone, indicating that both the sulphonylurea receptor (SUR1) and an inward rectifier (Kir6.1 or Kir6.2) are needed for functional channel activity. 3. The pharmacological properties of Kir6.2-SUR1 currents resembled those of native beta-cell ATP-sensitive K+ channel currents (KATP currents): the currents were > 90% blocked by tolbutamide (500 microM), meglitinide (10 microM) or glibenclamide (100 nM), and activated 1.8-fold by diazoxide (340 microM), 1.4-fold by pinacidil (1 mM) and unaffected by cromakalim (0.5 mM). 4. Macroscopic Kir6.2-SUR1 currents in inside-out patches were inhibited by ATP with a Ki of 28 microM. Kir6.1-SUR1 currents ran down within seconds of patch excision preventing analysis of ATP sensitivity. 5. No sensitivity to tolbutamide or metabolic inhibition was observed when SUR1 was coexpressed with either Kir1.1a or Kir2.1, suggesting that these proteins do not couple in Xenopus ocytes. 6. Our data demonstrate that the Xenopus oocyte constitutes a good expression system for cloned KATP channels and that expression may be assayed by azide-induced metabolic inhibition
    • …
    corecore