4 research outputs found

    Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans

    No full text
    Abstract Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore