45 research outputs found

    The correlation between endometrial thickness and outcome of in vitro fertilization and embryo transfer (IVF-ET) outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the relationship between endometrial thickness on day of human chorionic gonadotrophin administration (hCG) and pregnancy outcome in a large number of consecutive in vitro fertilization and embryo transfer (IVF-ET) cycles.</p> <p>Methods</p> <p>A retrospective cohort study including all patients who had IVF-ET from January 2003–December 2005 conducted at a tertiary center.</p> <p>Results</p> <p>A total of 2464 cycles were analysed. Pregnancy rate (PR) was 35.8%. PR increased linearly (r = 0.864) from 29.4% among patients with a lining of less than or equal to 6 mm, to 44.4% among patients with a lining of greater than or equal to 17 mm. ROC showed that endometrial thickness is not a good predictor of PR, so a definite cut-off value could not be established (AUC = 0.55).</p> <p>Conclusion</p> <p>There is a positive linear relationship between the endometrial thickness measured on the day of hCG injection and PR, and is independent of other variables. Hence aiming for a thicker endometrium should be considered.</p

    Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Video4_Evaluation of women’s aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling.MP4

    No full text
    The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. For this purpose, we present a dynamic three-dimensional (3D) mechanical model of human sperm cells swimming through the human fallopian tube for different women’s age groups. By utilizing a unique combination of simulative tools, we implemented dynamic 3D detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes describing different women’s age groups. By tracking the sperm cell swim, we found that for all age groups, the quantity of normal sperm cells in the ampulla is the highest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women’s aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman’s age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of the man’s sperm and the woman’s reproductive system.</p

    Video5_Evaluation of women’s aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling.MP4

    No full text
    The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. For this purpose, we present a dynamic three-dimensional (3D) mechanical model of human sperm cells swimming through the human fallopian tube for different women’s age groups. By utilizing a unique combination of simulative tools, we implemented dynamic 3D detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes describing different women’s age groups. By tracking the sperm cell swim, we found that for all age groups, the quantity of normal sperm cells in the ampulla is the highest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women’s aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman’s age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of the man’s sperm and the woman’s reproductive system.</p

    Video1_Evaluation of women’s aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling.MP4

    No full text
    The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. For this purpose, we present a dynamic three-dimensional (3D) mechanical model of human sperm cells swimming through the human fallopian tube for different women’s age groups. By utilizing a unique combination of simulative tools, we implemented dynamic 3D detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes describing different women’s age groups. By tracking the sperm cell swim, we found that for all age groups, the quantity of normal sperm cells in the ampulla is the highest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women’s aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman’s age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of the man’s sperm and the woman’s reproductive system.</p

    Video2_Evaluation of women’s aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling.MP4

    No full text
    The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. For this purpose, we present a dynamic three-dimensional (3D) mechanical model of human sperm cells swimming through the human fallopian tube for different women’s age groups. By utilizing a unique combination of simulative tools, we implemented dynamic 3D detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes describing different women’s age groups. By tracking the sperm cell swim, we found that for all age groups, the quantity of normal sperm cells in the ampulla is the highest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women’s aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman’s age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of the man’s sperm and the woman’s reproductive system.</p

    Video3_Evaluation of women’s aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling.MP4

    No full text
    The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. For this purpose, we present a dynamic three-dimensional (3D) mechanical model of human sperm cells swimming through the human fallopian tube for different women’s age groups. By utilizing a unique combination of simulative tools, we implemented dynamic 3D detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes describing different women’s age groups. By tracking the sperm cell swim, we found that for all age groups, the quantity of normal sperm cells in the ampulla is the highest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women’s aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman’s age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of the man’s sperm and the woman’s reproductive system.</p
    corecore