20 research outputs found

    Consensus-Based Distributed Filtering for GNSS

    Get PDF
    Kalman filtering in its distributed information form is reviewed and applied to a network of receivers tracking Global Navigation Satellite Systems (GNSS). We show, by employing consensus-based data-fusion rules between GNSS receivers, how the consensus-based Kalman filter (CKF) of individual receivers can deliver GNSS parameter solutions that have a comparable precision performance as their network-derived, fusion center dependent counterparts. This is relevant as in the near future the proliferation of low-cost receivers will give rise to a significant increase in the number of GNSS users. With the CKF or other distributed filtering techniques, GNSS users can therefore achieve high-precision solutions without the need of relying on a centralized computing center

    Satellite-clock modeling in single-frequency PPP-RTK processing

    Get PDF
    The real-time kinematic precise point positioning (PPP-RTK) technique enables integer ambiguity resolution by providing singlereceiver users with information on the satellite phase biases next to the standard PPP corrections. Using undifferenced and uncombined observations, rank deficiencies existing in the design matrix need to be eliminated to formestimable parameters. In this contribution, the estimability of the parameters was studied in single-frequency ionosphere-weighted scenario, given a dynamic satellite-clock model in the network Kalman filter. In case of latency of the network corrections, the estimable satellite clocks, satellite phase biases, and ionospheric delays need to be predicted over short time spans. With and without satellite-clock models incorporated in the network Kalman filter, different approaches were used to predict the network corrections. This contribution shows how the predicted network corrections responded to the presence and absence of satellite-clock models. These differences in the predicted network corrections were also reflected in the user positioning results. Using three different 1-Hz global positioning system (GPS) single-frequency data sets, two user stations in one small-scale network were used to compute the positioning results, applying predicted network corrections. The latency of the network products ranges from 3 to 10 s. It was observed that applying strong satellite-clock constraints in the network Kalman filter (i.e., with the process noise of 1 or 0.5mm per square root of second) reduced the root-mean squares (RMS) of the user positioning results to centimeters in the horizontal directions and decimeters in the vertical direction for latencies larger than 6 s, compared to the cases without a satellite-clock model

    Multi-GNSS PPP-RTK: From large- to Small-Scale networks

    Get PDF
    Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels) using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS) and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide) network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode) are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network

    Isolation and Identification of an Indigenous Probiotic Lactobacillus Strain: Its Encapsulation with Natural Branched Polysaccharids to Improve Bacterial Viability

    Get PDF
    Background and Objective: Probiotics have to reach their site of action in certain numbers in order to exhibit positive health effects. Encapsulation has shown remarkable enhancing effects on probiotic survival in simulated gastric conditions compared to free bacteria. The purpose of this study was identification and evaluation of a potential probiotic strain using encapsulation process by new carriers in order to improve probiotic viability during in vitro simulated conditions.Material and Methods: A native Lactobacillus was isolated from yogurt, identified as Lactobacillus casei PM01 (NCBI registered) and analyzed for probiotic properties alongside established probiotic strains of Lactobacillus acidophilus ATCC 43556, and Lactobacillus rhamnosus ATCC 7469. Acid and bile resistance, adhesion to Caco-2 cells and antibiotic resistance were evaluated. Lactobacillus casei PM01 was encapsulated with alginate, chitosan and natural branched polysaccharides (pectin, tragacanth gum and gum Arabic) by using extrusion technique. Encapsulation efficiency, acidification activity and viability of entrapped Lactobacillus casei PM01 in simulated gastric pH were determined. Results and Conclusion: Based on the results, all the three strains could be considered as potential probiotics, and are good candidates for further in vitro and in vivo evaluation. The results showed that the survival of encapsulated Lactobacillus casei PM01 was significantly (p≤0.05) increased when it was incubated in simulated gastric pH. It can be concluded that indigenous Lactobacillus casei PM01 in encapsulated form is introduced as an efficient probiotic strain for using in dairy products.Conflict of interest: The authors declare no conflict of interest

    S-system theory applied to array-based GNSS ionospheric sensing

    Get PDF
    The GPS carrier-phase and code data have proven to be valuable sources of measuring the Earth’s ionospheric total electron content (TEC). With the development of new GNSSs with multi frequency data, many more ionosphere-sensing combinations of different precision can be formed as input of ionospheric modelling. We present the general way of interpreting such combinations through an application of S-system theory and address how their precision propagates into that of the unbiased TEC solution. Presenting the data relevant to TEC determination, we propose the usage of an array of GNSS antennas to improve the TEC precision and to expedite the rather long observational time-span required for high-precision TEC determination

    Autonomous Satellite System Synchronization Schemes via Optical Two-Way Time Transfer and Distributed Composite Clock

    Get PDF
    To improve the provision of a global satellite navigation service, the German Aerospace Center (DLR) - Institute of Communication and Navigation - is proposing a next-generation global navigation satellite architecture named Kepler. Autonomous synchronization at picosecond-level is a fundamental component of the Kepler concept, achieved via two-way time transfer (TWTT) schemes enabled by optical inter-satellite links (OISLs). This level of synchronization is only achievable if relativistic effects are adequately considered. In this paper we present the synchronization scheme for Kepler: all satellites perform pairwise relativistic TWTT, providing relative clock offsets in a predefined coordinate time scale. These are then distributed across the whole constellation and are used as input for a space-based distributed clock ensemble. Each satellite realizes a local copy of the Kepler system time (KST) by steering a local oscillator, so that all satellites will tend to beat the same time, thus achieving a tight synchronization. We show how measurement noise impacts the final synchronization level, in two different designs of the Kepler architecture. Additionally, the impact of constant biases on the system time generation is analyzed. Finally, we assess the impact of the choice of constellation’s measurement topologies (open versus closed rings). The synchronization performance is expressed in terms of maximum time offset between any two satellites of the constellation

    Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation

    Get PDF
    © 2018, The Author(s). For long-baseline over several hundreds of kilometers, the ionospheric delays that cannot be fully removed by differencing observations between receivers hampers rapid ambiguity resolution. Compared with forming ionospheric-free linear combination using dual- or triple-frequency observations, estimating ionospheric delays using uncombined observations keeps all the information of the observations and allows extension of the strategy to any number of frequencies. As the number of frequencies has increased for the various GNSSs, it is possible to study long-baseline ambiguity resolution performance using up to five frequencies with uncombined observations. We make use of real Galileo observations on five frequencies with a sampling interval of 1 s. Two long baselines continuously receiving signals from six Galileo satellites during corresponding test time intervals were processed to study the formal and empirical ambiguity success rates in case of full ambiguity resolution (FAR). The multipath effects are mitigated using the measuremen ts of another day when the constellation repeats. Compared to the results using multipath-uncorrected Galileo observations, it is found that the multipath mitigation plays an important role in improving the empirical ambiguity success rates. A high number of frequencies are also found to be helpful to achieve high ambiguity success rate within a short time. Using multipath-uncorrected observations on two, three, four and five frequencies, the mean empirical success rates are found to be about 73, 88, 91, and 95% at 10 s, respectively, while the values are increased to higher than 86, 95, 98, and 99% after mitigating the multipath effects

    Array-aided single-differenced satellite phase bias determination: Methodology and results

    No full text
    Integer ambiguity resolution at a single GNSS receiver gets feasible, if network-derived satellite phase biases (SPBs), among other corrections, are a-priori available. In this paper, the concept of array-aided between-satellite single-differenced (SD) SPB determination is introduced which is aimed to reduce the code-dominated precision of SD-SPB corrections. The underlying model is realized by giving the role of the local reference network to an array of antennas, mounted on rigid platforms, that are separated by a few meters only. A closed-form expression of the array-aided SD-SPB corrections is presented, thereby proposing a simple strategy to compute the SD- SPBs. Upon resolving double-differenced ambiguities of the array's data, the variance of the SD-SPB corrections is shown to be reduced by a factor equal to the number of antennas. This improvement in precision is also affirmed by numerical results. Experimental results demonstrate that the user's integer-recovered ambiguities converge to integers faster, upon increasing the number of antennas aiding the SD-SPB corrections. Integrated with the ionospheric corrections, the stated SD-SPB corrections carry over the precision improvement to the user's position as well

    Multi-GNSS positioning

    No full text
    Full text available through link onlyPeer Reviewe

    Single-Epoch GNSS Array Integrity: An analytical study

    No full text
    In this contribution we analyze the integrity of the GNSS array model through the so-called uniformly most powerful invariant (UMPI) test-statistics and their corresponding minimal detectable biases (MDBs). The model considered is characterized by multiple receivers/satellites with known coordinates where the multi-frequency carrier-phase and pseudo-range observables are subject to atmospheric (ionospheric and tropospheric) delays, receiver and satellite clock biases, as well as instrumental delays. Highlighting the role played by the model’s misclosures, analytical multivariate expressions of a few leading test-statistics together with their MDBs are studied that are further accompanied by numerical results of the three GNSSs GPS, Galileo and BeiDou
    corecore