201 research outputs found

    The Changing Profile of Regional Inequality

    Get PDF
    There is a growing concern in developing and transition economies that spatial and regional inequality, of economic activity, incomes, and social indicators, is on the increase. Regional inequality is a dimension of overall inequality, but it has added significance when spatial and regional divisions align with political and ethnic tensions to undermine social and political stability. Despite these important popular and policy concerns, surprisingly there is little systematic and coherent documentation of the facts of what has happened to spatial and regional inequality over the past twenty years. This paper is an attempt to meet this gap. It provides changing scenarios of multi-dimensional inter-temporal spatial inequality and level of development in Pakistan during early 1980s and late 1990s

    Mapping the Spatial Deprivation of Pakistan

    Get PDF
    Geographical targeting may be a viable way to allocate resources for poverty alleviation in developing countries. Efficiency can be increased, and leakages to the nonpoor reduced substantially, by targeting needy areas. A national and regional database of substantial poverty maps or deprivation indices are not readily available in Pakistan. Further, existing activities of poverty alleviation are carried out on ad hoc basis in the absence of identified pockets of poverty. This paper presents indices of multiple deprivations based on the 1998 Population and Housing Census data. Possible applications of this exercise include identifying areas of need, making decisions on regional and sectoral priorities, facilitating targeted public interventions through special poverty alleviation programmes, understanding the relationship between poverty and its causes, and helping federal and provincial governments in determining financial awards.

    Development of Novel Time-Domain Electromagnetic Methods for Offshore Groundwater Studies: A Data Application from Bat Yam, Israel

    Get PDF
    Recent marine long-offset transient electromagnetic (LOTEM) measurements yielded the offshore delineation of a fresh groundwater body beneath the seafloor in the region of Bat Yam, Israel. The LOTEM application was effective in detecting this freshwater body underneath the Mediterranean Sea and allowed an estimation of its seaward extent. However, the measured data set was insufficient to understand the hydrogeological configuration and mechanism controlling the occurrence of this fresh groundwater discovery. Especially the lateral geometry of the freshwater boundary, important for the hydrogeological modelling, could not be resolved. Without such an understanding, a rational management of this unexploited groundwater reservoir is not possible. Two new high-resolution marine time-domain electromagnetic methods are theoretically developed to derive the hydrogeological structure of the western aquifer boundary. The first is called Circular Electric Dipole (CED). It is the land-based analogous of the Vertical Electric Dipole (VED), which is commonly applied to detect resistive structures in the subsurface. Although the CED shows exceptional detectability characteristics in the step-off signal towards the sub-seafloor freshwater body, an actual application was not carried out in the extent of this study. It was found that the method suffers from an insufficient signal strength to adequately delineate the resistive aquifer under realistic noise conditions. Moreover, modelling studies demonstrated that severe signal distortions are caused by the slightest geometrical inaccuracies. As a result, a successful application of CED in Israel proved to be rather doubtful. A second method called Differential Electric Dipole (DED) is developed as an alternative to the intended CED method. Compared to the conventional marine time-domain electromagnetic system that commonly applies a horizontal electric dipole transmitter, the DED is composed of two horizontal electric dipoles in an in-line configuration that share a common central electrode. Theoretically, DED has similar detectability/resolution characteristics compared to the conventional LOTEM system. However, the superior lateral resolution towards multi-dimensional resistivity structures make an application desirable. Furthermore, the method is less susceptible towards geometrical errors making an application in Israel feasible. In the extent of this thesis, the novel marine DED method is substantiated using several one-dimensional (1D) and multi-dimensional (2D/3D) modelling studies. The main emphasis lies on the application in Israel. Preliminary resistivity models are derived from the previous marine LOTEM measurement and tested for a DED application. The DED method is effective in locating the two-dimensional resistivity structure at the western aquifer boundary. Moreover, a prediction regarding the hydrogeological boundary conditions are feasible, provided a brackish water zone exists at the head of the interface. A seafloor-based DED transmitter/receiver system is designed and built at the Institute of Geophysics and Meteorology at the University of Cologne. The first DED measurements were carried out in Israel in April 2016. The acquired data set is the first of its kind. The measured data is processed and subsequently interpreted using 1D inversion. The intended aim of interpreting both step-on and step-off signals failed, due to the insufficient data quality of the latter. Yet, the 1D inversion models of the DED step-on signals clearly detect the freshwater body for receivers located close to the Israeli coast. Additionally, a lateral resistivity contrast is observable in the 1D inversion models that allow to constrain the seaward extent of this freshwater body. A large-scale 2D modelling study followed the 1D interpretation. In total, 425 600 forward calculations are conducted to find a sub-seafloor resistivity distribution that adequately explains the measured data. The results indicate that the western aquifer boundary is located at 3600 m - 3700 m before the coast. Moreover, a brackish water zone of 3 Omega*m to 5 Omega*m with a lateral extent of less than 300 m is likely located at the head of the freshwater aquifer. Based on these results, it is predicted that the sub-seafloor freshwater body is indeed open to the sea and may be vulnerable to seawater intrusion

    The THUMOS Challenge on Action Recognition for Videos "in the Wild"

    Get PDF
    Automatically recognizing and localizing wide ranges of human actions has crucial importance for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include `background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013--2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.Comment: Preprint submitted to Computer Vision and Image Understandin

    Elucidating the Impact of behavioral biases in Pakistan Stock Market: Moderating Impact of Financial Literacy

    Get PDF
    The current study focuses on some of the most commonly relied upon biases in decision making. The study aimed at understanding the influence of herding, overconfidence, anchoring, and loss aversion on the decision-making style of investor besides it also investigates the role of financial literacy, since the traditional paradigm of finance is of the view that the knowledge of finance is directly associated with the degree of irrational outcomes. To explore this linkage data from investors trading at Lahore, Karachi, and Islamabad is gathered. Structural equation modeling is used for establishing the proposed associations. The results revealed that behavioral biases significantly impact the decision-making of investors.  The results of moderation analysis presented that financial literacy plays a major role in de-biasing decision making. These findings can be extremely useful for investors, policymakers, and investment professionals. Not only to make optimal decision-making but also by providing a deeper understanding of the daily life stock market behavior

    Step-on versus step-off signals in time-domain controlled source electromagnetic methods using a grounded electric dipole

    Get PDF
    The time‐domain controlled source electromagnetic method is a geophysical prospecting tool applied to image the subsurface resistivity distribution on land and in the marine environment. In its most general setup, a square‐wave current is fed into a grounded horizontal electric dipole, and several electric and magnetic field receivers at defined offsets to the imposed current measure the electromagnetic response of the Earth. In the marine environment, the application often uses only inline electric field receivers that, for a 50% duty‐cycle current waveform, include both step‐on and step‐off signals. Here, forward and inverse 1D modelling is used to demonstrate limited sensitivity towards shallow resistive layers in the step‐off electric field when transmitter and receivers are surrounded by conductive seawater. This observation is explained by a masking effect of the direct current signal that flows through the seawater and primarily affects step‐off data. During a step‐off measurement, this direct current is orders of magnitude larger than the inductive response at early and intermediate times, limiting the step‐off sensitivity towards shallow resistive layers in the seafloor. Step‐on data measure the resistive layer at times preceding the arrival of the direct current signal leading to higher sensitivity compared to step‐off data. Such dichotomous behaviour between step‐on and step‐off data is less obvious in onshore experiments due to the lack of a strong overlying conductive zone and corresponding masking effect from direct current flow. Supported by synthetic 1D inversion studies, we conclude that time‐domain controlled source electromagnetic measurements on land should apply both step‐on and step‐off data in a combined inversion approach to maximise signal‐to‐noise ratios and utilise the sensitivity characteristics of each signal. In an isotropic marine environment, step‐off electric fields have inferior sensitivity towards shallow resistive layers compared to step‐on data, resulting in an increase of non‐uniqueness when interpreting step‐off data in a single or combined inversion

    Effects of metallic system components on marine electromagnetic loop data

    Get PDF
    Electromagnetic loop systems rely on the use of non‐conductive materials near the sensor to minimize bias effects superimposed on measured data. For marine sensors, rigidity, compactness, and ease of platform handling are essential. Thus, commonly a compromise between rigid, cost‐effective, and non‐conductive materials (e.g. stainless steel versus fiberglass composites) needs to be found. For systems dedicated to controlled‐source electromagnetic measurements, a spatial separation between critical system components and sensors may be feasible, whereas compact multi‐sensor platforms, remotely operated vehicles, and autonomous unmanned vehicles require the use of electrically conductive components near the sensor. While data analysis and geological interpretations benefit vastly from each added instrument and multidisciplinary approaches, this introduces a systematic and platform immanent bias in the measured electromagnetic data. In this scope we present two comparable case studies targeting loop‐source electromagnetic applications in both time and frequency domain: the MARTEMIS time domain system trades the compact design for a clear separation of 15 m between an upper fiberglass frame, holding most critical titanium system components, and a lower frame with its coil and receivers. In case of the GOLDEN EYE frequency domain profiler, the compact and rigid design is achieved by a circular fiberglass platform, carrying the transmitting and receiving coils, as well as several titanium housings and instruments. In this study, we analyze and quantify the quasi‐static influence of conductive objects on time and frequency domain coil systems by applying an analytically and experimentally verified 3D finite element model. Moreover, we present calibration and optimization procedures to minimize bias inherent in the measured data. The numerical experiments do not only show the significance of the bias on the inversion results, but also the efficiency of a system calibration against the analytically calculated response of a known environment. The remaining bias after calibration is a time/frequency dependent function of seafloor conductivity, which doubles the commonly estimated noise‐floor from 1% to 2%, decreasing the sensitivity and resolution of the devices. By optimizing size and position of critical conductive system components (e.g. titanium housings) and/or modifying the transmitter/receiver geometry, we significantly reduce the effect of this residual bias on the inversion results as demonstrated by 3D‐modelling. These procedures motivate the opportunity to design dedicated, compact, low‐bias platforms and provide a solution for autonomous and remotely steered designs by minimizing their effect on the sensitivity of the controlled‐source electromagnetic sensor

    Chemometrics and Spectroscopic Analyses of Peganum harmala Plant’s Seeds by Laser‐Induced Breakdown Spectroscopy

    Get PDF
    In the present work, the rapid identification of elements and their relative chemical com‐ position in various Peganum harmala seed samples were investigated using a calibration‐free laser‐ induced breakdown spectroscopy technique (CF‐LIBS). A pulsed Nd:YAG laser‐source with a 5 ns pulse‐duration, and 10 Hz pulse repetition rates providing 400 and 200 mJ energy at 1064 and 532 nm wavelength, respectively, was focused on the Peganum harmala seed samples for ablation. A LIBS 2000+ spectrometer within the wavelength range (200 to 720 nm), emission‐spectra were recorded. The measured spectra of the Peganum harmala sample gives spectral lines of Carbon (C), Magnesium (Mg), Lithium (Li), Sodium (Na), Calcium (Ca), Silicon (Si), Iron (Fe), Strontium (Sr), Copper (Cu), Potassium (K), and Lead (Pb). A CF‐LIBS technique has been employed for the compositional study of the elements exist in the Peganum harmala seed samples. The measured results demonstrate that C, Mg, and Ca are found to be major elements in the Peganum harmala seed samples with composi‐ tions of ~36.64%, ~24.09%, and ~19.03%, respectively. Along with the major elements, the elements including Li, Na, Si, K, Fe, and Sr were identified as minor elements with compositions of ~2.87%, ~2.33%, ~3.72%, ~7.17%, ~2.83%, and ~1.14%, respectively. Besides Cu (~8.07 ÎŒg/g), and Pb (~1.10 ÎŒg/g) elements were observed as trace elements exist in the Peganum harmala seed samples. Further‐ more, the electron number density including the plasma excitation‐temperature were calculated using the stark‐broadening line profile method and the Saha–Boltzmann plot method, respectively. The plasma parameters versus laser‐irradiance and the distance from the sample were further in‐ vestigated. Moreover, a principal component analysis (PCA) method was also utilized to the spec‐ tral data obtained by using LIBS to discriminate various seed samples with four classes, namely, α, ÎČ, Îł, and Δ. Three principal‐components (PCs) calculated from eigenvalues of score matrix de‐ scribed 87.6%, 4.6%, and 2.5% of total variance for PC1, PC2, and PC3, respectively. The LIBS spec‐ tral data variance covered by the initial 3 PCS was found as ~94.7% of total variance. The PCA results have successfully demonstrated the different classes of the Peganum harmala seed samples based on the different doping compositional ratios of the Zn element. This study confirmed the feasibility and ability of LIBS and PCA for the rapid analysis of Peganum harmala seed samples. Finally, the results achieved using CF‐LIBS were incorporated with those obtained from the XRF and EDX an‐ alytical techniques
    • 

    corecore