589 research outputs found

    Collision effects in velocity-selective optical pumping of sodium

    Get PDF
    We report on a quantitative experimental investigation of velocity-changing collisions by means of velocity-selective optical pumping (VSOP). We have calculated the VSOP line shape for an atom with hyperfine structure with the use of two phenomenological kernels for the collision effects: the Keilson-Storer kernel, and a two-term kernel consisting of a broad Keilson-Storer part and a narrower Gaussian component. Corrections were included to account for the finite absorption in the sample and the backward reflection of the pumping beam. The experiments were carried out in sodium vapor with neon as the perturber gas. The D1 line of sodium was used for optical pumping, and the orientation of the ground state was detected. Free parameters of the theory were determined by fitting the predicted line shapes to experimental curves. The Keilson-Storer kernel proved unsatisfactory, but the two-term kernel reproduced well the observed line shapes over the entire collision profiles in the neon pressure range 0-57 mtorr. In an independent experiment using rapidly modulated VSOP we also measured directly the cross section of velocity-changing collisions: σ=(1.13±0.10)×10exp−14 cm2. The large weight obtained for the narrow Gaussian from the fits, as well as the collision cross section which is three times as large as the cross section deduced from tabulated gas kinetic radii, may indicate the presence of collisions with relatively small velocity changes in addition to hard-sphere encounters.Peer reviewe

    Spin correlations in the extended kagome system YBaCo3FeO7

    Get PDF
    The transition metal based oxide YBaCo3FeO7 is structurally related to the mineral Swedenborgite SbNaBe4O7, a polar non-centrosymmetric crystal system. The magnetic Co3Fe sublattice consists of a tetrahedral network containing kagome-like layers with trigonal interlayer sites. This geometry causes frustration effects for magnetic ordering, which were investigated by magnetization measurements, M\"ossbauer spectroscopy, polarized neutron diffraction, and neutron spectroscopy. Magnetization measurement and neutron diffraction do not show long range ordering even at low temperature (1 K) although a strong antiferromagnetic coupling (~2000 K) is deduced from the magnetic susceptibility. Below 590 K, we observe two features, a spontaneous weak anisotropic magnetization hysteresis along the polar crystallographic axis and a hyperfine field on the Fe kagome sites, whereas the Fe spins on the interlayer sites remain idle. Below ~50 K, the onset of a hyperfine field shows the development of moments static on the M\"ossbauer time scale also for the Fe interlayer sites. Simultaneously, an increase of spin correlations is found by polarized neutron diffraction. The relaxation part of the dynamic response has been further investigated by high-resolution neutron spectroscopy, which reveals that the spin correlations start to freeze in below ~50 K. Monte Carlo simulations show that the neutron scattering results at lower temperatures are compatible with a recent proposal that the particular geometric frustration in the Swedenborgite structure promotes quasi one dimensional partial order.Comment: 13 pages, 7 figure

    High-sensitivity optical measurement of mechanical Brownian motion

    Get PDF
    We describe an experiment in which a laser beam is sent into a high-finesse optical cavity with a mirror coated on a mechanical resonator. We show that the reflected light is very sensitive to small mirror displacements. We have observed the Brownian motion of the resonator with a very high sensitivity.Comment: 4 pages, 4 figures, RevTe

    Transitions between levels of a quantum bouncer induced by a noise-like perturbation

    Full text link
    The probability of transition between levels of a quantum bouncer, induced by a noise-like perturbation, is calculated. The results are applied to two sources of noise (vibrations and mirror surface waviness) which might play an important role in future GRANIT experiment, aiming at precision studies of/with the neutron quantum bouncer

    Coherent Evolution of Bouncing Bose-Einstein Condensates

    Get PDF
    We investigate the evolution of Bose-Einstein condensates falling under gravity and bouncing off a mirror formed by a far-detuned sheet of light. After reflection, the atomic density profile develops splitting and interference structures which depend on the drop height, on the strength of the light sheet, as well as on the initial mean field energy and size of the condensate. We compare experimental results with simulations of the Gross-Pitaevski equation. A comparison with the behaviour of bouncing thermal clouds allows to identify quantum features specific for condensates.Comment: 4 page

    An adaptive inelastic magnetic mirror for Bose-Einstein condensates

    Get PDF
    We report the reflection and focussing of a Bose-Einstein condensate by a new pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely high optical quality. The deviations from specularity are less than 0.5 mrad rms, making this the best atomic mirror demonstrated to date. We have also used the mirror to realize the analog of a beam-expander, producing an ultra-cold collimated fountain of matter wavesComment: 4 pages, 4 figure

    Quantum damping of position due to energy measurements

    Get PDF
    Quantum theory for measurements of energy is introduced and its consequences for the average position of monitored dynamical systems are analyzed. It turns out that energy measurements lead to a localization of the expectation values of other observables. This is manifested, in the case of position, as a damping of the motion without classical analogue. Quantum damping of position for an atom bouncing on a reflecting surface in presence of a homogeneous gravitational field is dealt in detail and the connection with an experiment already performed in the classical regime is studied. We show that quantum damping is testable provided that the same measurement strength obtained in the experimental verification of the quantum Zeno effect in atomic spectroscopy [W. M. Itano et al., Phys. Rev. A {\bf 41}, 2295 (1990)] is made available.Comment: 19 pages + 4 figures available upon request; Plain REVTeX; To be published in Phys. Rev.

    Fractional quantum revivals in the atomic gravitational cavity

    Get PDF
    In this paper we discuss the quantum dynamics and fractional quantum revivals of an integrable nonlinear system, consisting of an atom bouncing vertically from an evanescent field, for two cases with the simplified infinite-potential and the more practical exponential potential, respectively. We study the two cases separately, then contrast and compare the results and reach the conclusion that provided the starting position of the atoms is not too close to the reflecting surface supporting the evanescent wave (this condition is always satisfied in present experiments in this field), the two cases will produce the same results. This means that the idealized infinite potential is a good approximation to the more realistic exponential potential. Because the quantum analysis of the infinite-potential case is quite simple and straighforward (since its Schrödinger equation has analytical solutions), this will greatly simplify the quantum analysis of the more complicated exponential potential case and hence has practical significance

    Quantum Revivals in Periodically Driven Systems close to nonlinear resonance

    Full text link
    We calculate the quantum revival time for a wave-packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement.Comment: 14 pages, 1 figur
    • …
    corecore