43,717 research outputs found

    Detection and Isolation of Link Failures under the Agreement Protocol

    Full text link
    In this paper a property of the multi-agent consensus dynamics that relates the failure of links in the network to jump discontinuities in the derivatives of the output responses of the nodes is derived and verified analytically. At the next step, an algorithm for sensor placement is proposed, which would enable the designer to detect and isolate any link failures across the network based on the observed jump discontinuities in the derivatives of the responses of a subset of nodes. These results are explained through elaborative examples.Comment: 6 pages, 3 figures, IEEE Conference on Decision and Control, 201

    Rabi Oscillations in Systems with Small Anharmonicity

    Get PDF
    When a two-level quantum system is irradiated with a microwave signal, in resonance with the energy difference between the levels, it starts Rabi oscillation between those states. If there are other states close, in energy, to the first two, the Rabi signal will also induce transition to those. Here, we study the probability of transition to the third state, in a three-level system, while a Rabi oscillation between the first two states is performed. We investigate the effect of pulse shaping on the probability and suggest methods for optimizing pulse shapes to reduce transition probability.Comment: 7 pages, 7 figure

    Langmuir dark solitons in dense ultrarelativistic electron-positron gravito-plasma in pulsar magnetosphere

    Full text link
    Nonlinear propagation of electrostatic modes in ultrarelativistic dense elelectron-positron gravito-plasma at the polar cap region of pulsar magnetosphere is considered. A nonlinear Schr\"{o}dinger equation is obtained from the reductive perturbation method which predicts the existence of Langmuir dark solitons. Relevance of the propagating dark solitons to the pulsar radio emission is discussed.Comment: 6 pages, 7 figures. Accepted for publication in Astrophysics and Space Science. arXiv admin note: text overlap with arXiv:astro-ph/9808047 by other authors without attributio

    Spin Transport at Interfaces with Spin-Orbit Coupling: Phenomenology

    Full text link
    This paper presents the boundary conditions needed for drift-diffusion models to treat interfaces with spin-orbit coupling. Using these boundary conditions for heavy metal/ferromagnet bilayers, solutions of the drift-diffusion equations agree with solutions of the spin-dependent Boltzmann equation and allow for a much simpler interpretation of the results. A key feature of these boundary conditions is their ability to capture the role that in-plane electric fields have on the generation of spin currents that flow perpendicularly to the interface. The generation of these spin currents is a direct consequence of the effect of interfacial spin-orbit coupling on interfacial scattering. In heavy metal/ferromagnet bilayers, these spin currents provide an important mechanism for the creation of damping-like and field-like torques; they also lead to possible reinterpretations of experiments in which interfacial contributions to spin torques are thought to be suppressed.Comment: 16 pages, 4 figures; abstract revised, introduction extended, references added, results unchange

    Anisotropic Transport Properties of Ferromagnetic-Superconducting Bilayers

    Get PDF
    We study the transport properties of vortex matter in a superconducting thin film separated by a thin insulator layer from a ferromagnetic layer. We assume an alternating stripe structure for both FM and SC layers as found in [7]. We calculate the periodic pinning force in the stripe structure resulting from a highly inhomogeneous distribution of the vortices and antivortices. We show that the transport properties in FM-SC bilayer are highly anisotropic. In the absence of random pinning it displays a finite resistance for the current perpendicular to stripes and is superconducting for the current parallel to stripes. The average vortex velocity, electric field due to the vortex motion, Josephson frequency and higher harmonics of the vortex oscillatory motion are calculated.Comment: 4 pages, 2figures, Submitted to PR
    corecore