
Fizika Nizkikh Temperatur, 2006, v. 32, No. 3, p. 269–276

Rabi oscillations in systems with small anharmonicity
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When a two-level quantum system is irradiated with a microwave signal in resonance with the
energy difference between the levels, it starts Rabi oscillations between those states. If there are
other states close, in energy, to the first two, the microwave signal will also induce transitions to
those. Here we study the probability of transition to the third state, in a three-level system, while
Rabi oscillations between the first two states are performed. We investigate the effect of pulse
shaping on the probability and suggest methods for optimizing the pulse shapes to reduce the tran-
sition probability.
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1. Introduction

Most qubits (basic elements in a quantum com-
puter) are not true two-level systems. Yet, only the
first two energy states are commonly considered rele-
vant for quantum computation. As a result, any transi-
tion to the upper levels during the gate operations is
a leakage of information outside the computational
space, and therefore a source of error.

One of the common methods of perform gate opera-
tions in a qubit is via Rabi oscillations [1,2]. The
speed of operation is determined by the Rabi fre-
quency �R, which is proportional to the amplitude of
the applied microwave signal. Rabi oscillations have
been observed in many quantum systems, including
superconducting qubits [3–7], excitons in single quan-
tum dots [8,9], and recently in single electron spins in
nitrogen-vacancy defect centers in diamond [10].

In a multi-level quantum system, Rabi oscillations
may not be limited to only the first two states. For ex-
ample, in a harmonic oscillator, with equally spaced
energy eigenvalues, applying a signal in resonance
with the level spacings will occupy many states.
When the system is strongly anharmonic, on the other
hand, i.e., when the third state is far above the first
two, the probability of transition to the third level
will be vanishingly small.

To have a quantitative measure of anharmonicity,
we define an anharmonicity coefficient by

� � �( )E E /E21 10 10 , (1)

where, E E Eij i j� � , with E0 being the ground
state and Ei � 0, the ith excited state energy. The co-
efficient � is zero for a harmonic oscillator and � � �
for an ideal two level system.

Not every qubit realization has a large �. For exam-
ple, in a current biased Josephson junction qubit [5],
E21 is always smaller than E10 leading to a negative �
close to zero. Charge-phase qubits also suffer from
small anharmonicity, merely because of operating in
the charge-phase regime; for the «quantronium» qubit
of Vion et al. [4], � 	 0 2. , and for the flux based
charge-phase qubit of Ref. 11, a � �O( )1 was sug-
gested.

The purpose of this paper is to study how much the
smallness of � can affect transition to the upper state
and how it can be avoided. We study the problem in a
three-state quantum system with small anharmonicity.
Quantum properties of three level systems have been
studied before [2], in particular the effect of pulse
shaping on the transition probability to the third level
was investigated in Ref. 12. Here we provide detailed
analytical and numerical analysis for quantum evolu-
tion of a three level quantum system irradiated with a
microwave signal in resonance with the energy differ-
ence between the first two levels. Such a situation
happens in quantum computation when the qubits are
not ideal two-level systems. We suggest optimization
methods for shaping the microwave pulse to minimize
the transition to the third level.
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In Sec. 2, we perform analytical calculations using
rotating wave approximation (RWA). Section 3, goes
beyond RWA using numerical methods. The effect of
pulse shaping on the transition probabilities is ad-
dressed in Sec. 4. Section 5 discusses practical exam-
ples within superconducting qubit implementations. A
brief summary together with some concluding remarks
are provided in Sec. 6.

2. Analytical calculation

Let us consider a quantum system with three states
| i
, i � 0 1 2, , , irradiated with a microwave signal in
resonance with the energy difference between the first
two levels. The Hamiltonian of the system is writ-
ten as (E E E2 1 0 0� � � )

H � 
 � � 
 � �E E V t1 21 1 2 2| | | | ( ) (2)

where V t V i t( ) exp ( )� � �0 0� c.c. is the microwave
signal ( )� � 1 . With the wave function written as
| ( ) ( ) | ( ) | ( ) |
 t c t c t c t
 � 
 � 
 � 
0 1 20 1 2 , the Schr�dinger
equation leads to
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where V t i V t jij ( ) | ( )|� � 
. We have taken V02 0� ; the
transition probability will be small anyway because
of large frequency difference. For simplicity, we
write E1 0� � and E2 02� �( )� � . In this section, we
assume � �� 1 to ensure small anharmonicity.

Let us define ~c c0 0� , ~ exp ( )c c i t1 1 0� � , ~c2 �
� c i t2 02exp ( )� , and write V / u i t01 0 0� �� �exp ( )
+ c.c. and V / v i t12 0 0� �� �exp ( ) c.c. Using the
RWA, i.e., ignoring the fast oscillating terms, we find
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where � �� 0t. The equation for ~c1 can be extracted
from (4):

[ (| | | | ) | | ] ~� � � � � � � �� � �� �3 2 2 2 2
1 0i u v i u c . (5)

Writing ~ exp ( )c k ix1 � � � , we find that x needs to sat-
isfy

x x u v x u3 2 2 2 2 0� � � � �� �(| | | | ) | | . (6)

General solutions are
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To find the coefficients, let us write (n � 1 2 3, , )
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which satisfy (4). Assuming that the system starts
from the ground state, we impose the initial condi-
tions: ~c0 1� and ~ ~c c1 2 0� � , which yield

k x k x k un
n

n
n

n n
n

n� � �� � �0 0 2 2, , | | . (11)

Solving these equations for kn , we find

k
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1 2 1 3
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k2 and k3 can be obtained by permutation of the indi-
ces.

Let us write

~ exp ( )c ixn n2 � ��' � ,

where ' n n nx u k /uv� �( | | )2 2 . The probability of
finding the system in the upper state is

P c ix Pn
n
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determines an upper bound for P2( )� . We first study
the solution in some special cases.

Case I, � � 0

This is the simplest case for which the problem can
be solved. From (7)–(9), we find

x x R1 230
1
2

� �, , � � , (15)

where �R u v� �2 2 2| | | | is the Rabi frequency (for
oscillations of the probabilities). These can also be
found easily from (6) directly. Using (12), we find
k v/ R1

22�| |� and k k u/ R2 3
22� � | |� . As a result
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The system oscillates with only one (Rabi) frequency
�R. The probability of finding the system in the up-
per state | ~ |c2

2 can become large: P uv / Rmax � 64 2 4| | � .
This is expected in a system with zero anharmonicity.

Case II, v � 0

Using (8)–(9), together with

tan tan tan tan3 3 33 2� � � �� � � ,

cos cos cos3 4 33� � �� � ,
(17)

we find cos � �� � /z, which immediately yields

x u1 � � | | , x2 � � , x u3 � | | . (18)

These could also be found directly from (6). For the
k’s, we get: k k /1 3 1 2� � and k2 0� , leading to

~ cos ,

~ sin ,

~ .

c

c i
u

c

R

R
R

0

1

2

1
2

2
1
2

0

�

� �

�

�

�
�

�

� (19)

The results show usual Rabi oscillation between the
first two states with frequency �R u� 2| |. The proba-
bility of finding the system in the upper state is al-
ways zero (P2 0� ), as expected because v � 0.

Case III, � �� u v,

In the regime u v, �� ��� 1, one can find asymp-
totic solutions. A systematic expansion in u/� and v/�
gives
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leading to the Rabi frequency
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The dependence of the Rabi frequency on the ampli-
tude of the microwave signal now has the form

�R V V* �0 0
21( )+ , (22)

where the coefficient + depends on the details of the
system. The deviation from the proportionality rela-
tion is a signature of transition to the upper states.
Such a deviation has been experimentally observed re-
cently in a current biased ds-SQUID structure [13].

The probability of finding the system in the upper
state is given by

P
v
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It oscillates with the Rabi frequency �R. The maxi-
mum probability
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occurs at half a Rabi period (i.e., at � �� / R� ),
where P1 is the largest. This is not the case for small �
(see e.g., case I). Here, , �| |v/u 2 is a constant de-
pending on the details of the Hamiltonian. In most
physical systems | | | |v u- and therefore , �O( )1 .

General case

It is not easy to find a closed analytical solution for
the general case. Instead we plot the results for Pmax,
calculated using (7)–(9) together with (12) and (14).
Figure 1 shows Pmax as a function of �/u with differ-
ent values of v/u. At small v/u, the curves are peaked
near � � u, where the detuning � is close to the oscilla-
tion frequency �R/2 (	 | |u) of the probability ampli-
tudes. For larger values of v/u the peak shifts towards
� � 0. Notice that �R also becomes smaller [see, e.g.,
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Eq. (21)]. In all cases Pmax becomes very small at
large �/u, as expected for large detuning.

3. Numerical calculation

In this section we calculate the quantum evolution
of the system numerically using the density matrix ap-
proach. This allows us to study the system beyond the
RWA and/or at large �. The dynamics of the 3 3.
density matrix / is described by

i
d

dt

/
/� [ , ]H . (25)

We integrate this equation starting from

/0
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which describes the system in the lowest energy state.
Probabilities of finding the system in different states
are given by: P0 11� / , P1 22� / , and P2 33� / . Fi-
gure 2 displays the time evolution of these probabili-
ties. The fast oscillations are the effect of high fre-
quency terms, which were ignored in the previous
section due to the RWA. Figure 2,a shows the Rabi
oscillation when � � 01. . After (almost) half a Rabi
period, significant amount of the probability goes to
the third state. By increasing � to 0.5, the probability
of finding the system in the upper state is substan-
tially reduced (Fig. 2,b; the lower curve in the figure
is magnified for clarity).

The maximum occupation probability of the system
in the upper state is given by P Pmax max� �[ ]2 . Figure
3 shows the dependence of Pmax on �. The solid lines
are analytical curves using (14), and the dashed ones
represent the results of numerical calculations. While
the two curves coincide at small �, they soon deviate
from each other as � increases. However, the overall
behavior of the curves, especially the asymptotic
P v /max - | |2 2� dependence remains unchanged even
at large �. To emphasize this aspect, we have plotted
P / vmax�

2 2| | versus � in Fig. 4, for different values of
parameters. All the curves overlap at large �, suggest-
ing P v /Rmax - -| | / ( )2 2 2� �� , in agreement with
(24); the coefficient ,, however, is now a slow func-
tion of the parameters, but still O( )1 . The large peak
(for small v curve) happens at � 	 �R/2, where the
Rabi oscillation frequency compensates the energy de-
tuning, as mentioned before. The small fluctuations of
the curves are the results of numerical inaccuracy.

4. Effect of pulse shape

So far we have assumed that the microwave signal
starts at � � 0 and continues forever. To perform a gate
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operation, however, one needs to apply the Rabi sig-
nal for only a short duration of time. In that respect,
the calculations presented in the previous sections can
only describe hard (square) pulses; assuming the mi-
crowave signal gets terminated after the pulse dura-
tion �p . The probability P2 then oscillates with �p at
the Rabi frequency. The maximum probability usually
happens in the case of a �-rotation, i.e., when the
probability is maximally transferred to |1
.

A hard pulse is neither practical, nor the best pulse
shape, as was indicated in Ref. 12. Indeed, by using
other types of pulses, the probability of transition to
the upper level, at the end of the process, can be sig-
nificantly reduced. Among a few pulse shapes exam-
ined in [12], Gaussian pulses demonstrated the most
promise. To understand the role of pulse shaping, let
us compare the effect of a Gaussian pulse on the prob-
ability P2, with that of a hard pulse, for the case of a
�-rotation.

To impose a Gaussian envelope on the microwave
signal V t( ), we write

u

a
/ /

w
p w p( )

exp ( ( ) ) ,
� �

� � � � �
�

� � � �
0

2 2 0

0

2 2 for

otherwise ,

�

�
1

�1

where �w is the width of the Gaussian, 0 is the total
angle of rotation in the Bloch sphere [15] (e.g., 0 � �
for a �-rotation), and a is a normalization constant.

Figure 5 shows the probability P2 as a function of
time for a Gaussian and a hard pulse, both of which
have the same duration and result in a �-rotation
(0 � �" at the end of the pulse. In our numerical calcu-
lation we take v u� , � � 0 05. , �p � 500, � �w p/� 6,
and a � 0 398. . These numbers correspond to the op-
timal pulse shape suggested in [12]. The maximum of

P2 for the Gaussian pulse, happens slightly after the
center of the pulse, while in the case of the hard pulse,
it occurs near the end. Although the maximum is
larger for the Gaussian pulse, the probability P f2 at
the end of the process is much smaller. Orders of mag-
nitude reduction of the final probability can be achie-
ved using such a technique.

In Ref. 12, �w was fixed (to �p/6 or �p/4) and �p
was varied to minimize P f2 . A � � �p 	 8 /| | was shown
to provide the first minimum with shortest duration.
Alternatively, one can fix �p and find a �w which
gives minimum P f2 . This may work better for shorter
pulses. For example, for �p � 100, � � 01. , and v u� , a
Gaussian pulse with � �w p/� 6 gives P f2 0 093� . ,
while the minimum probability P f2 0 0026� . is achie-
ved at � �w p� 0 31. and a � 0 467. . Such a pulse shape
starts and ends with jumps (see Fig. 6), but still gives
smaller P2 at the end of the process.
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Gaussian is not the optimal pulse shape for mini-
mizing P f2 . One can design other pulses with more
free parameters to achieve a smaller probability. To
have some idea about how small P f2 can made by ap-
propriately shaping the pulse, we define an arbitrary
pulse by the series

u / n /p n
n

N

p( ) ( ) cos ( )� � 2 � � �� �
�

�
�
�

�

�
�
�

�

�0 1 2
1

. (27)

Keeping only the first two terms in the series, (using
the same conditions as above: �p � 100, � � 01. , and
v u� ) one can already reach a probability as small as
P f2

512 10� �. • with 21 0 3833� � . and 22 01293� . (see
Fig. 6). With N � 33 terms in the series, the proba-
bility was reduced to 2 4 10 6. • � . The resulting pulse
shape, shown in Fig. 7, is complicated and may not
be useful experimentally. However, it demonstrates
the effectiveness of optimization on reducing P f2 . It
should also be emphasized that with the pulse shape
of (27), there is not a unique minimum for P f2 . De-
pending on the starting point and the method of
minimization, one may fall into a local minimum with
complicated pulse shape.

Here, we have only considered the case of 0 � �.
For quantum operations, other pulses may also be re-
quired. It is not just enough to change the amplitude
of the pulse, keeping its shape and duration, in order
to obtain optimized pulses with other 0’s. Indeed, for
each type of operation, one needs to design a specific
pulse shape that provides minimum P f2 .

5. Discussion

In a practical quantum computer, the maximum
number of operations is limited by the decoherence
time of the qubits as well as the speed of operations. It

is generally believed that if ~ 104 operations can be
performed within the decoherence time, a quantum
computation can continue indefinitely with the help
of quantum error correction algorithms. A parameter
that is commonly quoted as a measure for the maxi-
mum number of operations is the quality factor of the
qubit, usually defined as

Q� ���
1
2

, (28)

where �� is the dephasing time of the qubit (in units
of 1 0/� ). Quality factor Q�, however, corresponds to
only one type of single qubit operations, namely
phase rotation. Other necessary operations, such as
single qubit state flip or multi-qubit gate operations
are usually much slower. Even for the phase rotation,
the extent to which one can control the rotation, i.e.,
change E10, may be much smaller than the rotation
frequency itself.

The single qubit state flip can be performed using
Rabi oscillations [4–6] or non-adiabatic evolution
[14]. The latter is fast (	 �0), but requires large
anharmonicity to avoid unwanted Landau–Zener tran-
sition to the upper states. Rabi oscillations, on the
other hand, are much slower, but can be used in small
anharmonicity systems. It is possible to define a qua-
lity factor for the Rabi oscillations the same way asQ�

was defined in (28)

Q QR R R R3 	
1
2
� �� � , (29)

where �R is the Rabi decay time, which is typically
the same order as ��.

In an ideal two level system, �R is limited by the
maximum allowed amplitude of the microwave signal
(restricted by the RWA and/or experimental limita-
tions). Usually an �R as large as 01. (in units of �0) or
even larger is conceivable. In practical systems, espe-
cially those with small anharmonicity, however, in-
creasing the microwave power will cause transition to
the upper states as we discussed. Therefore �R is lim-
ited by how much probability of the upper levels can
be tolerated. If we restrict Pmax to - �10 4, then (24)
gives �R - �10 2�. Therefore to achieve �R ~ .01
( . )Q QR - 01 � we need a � � 10. Such a large an-
harmonicity cannot be supported by many qubit im-
plementations (see below for a few examples).

Using a shaped (instead of hard) pulse can signifi-
cantly reduce the final P2. To define a quality factor
similar to (29), we use the fact that in the case of a
hard pulse, a �-rotation is implemented when
�R p/� � � . We therefore define
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Therefore a Q Qshaped � 01. � requires a pulse with
duration � �p � 	10 30 for a �-rotation. It was shown
in [12], that a Gaussian pulse with � �w p/� 6 pro-
vides minimum P2 with shortest time if � � �p 	 8 /| |. A
quality factor of 01. Q� is therefore achievable in a sys-
tem with � 	 0 8. . Other pulse shapes may provide
better performance at smaller �, as was discussed be-
fore. Below, we provide a few examples among super-
conducting qubits.

In the current-biased Josephson junction qubit of
Ref. 5, the energy differences are �10 6 9	 . GHz and
�21 6 28	 . GHz, leading to � 	 �0 09. . Also, one can
easily verify [12] that | | | | | |v u u� -2 , as expected. For
a hard pulse, requiring Pmax - �10 4 and using (24)
(with , 	 1), one finds �R - �10 3

0� , which is ex-
tremely slow. The quality factor QR will also be very
small ( - �10 3Q�). Using a Gaussian pulse shape with
� �w p/� 6, one can achieve a quality factor
- �10 2Q�, with much smaller P f2 . Aiming for a larger

quality factor, one can make use of shaped pulses.
A Gaussian pulse with duration �p � 100 (Qshaped 	
	 0 03. Q�) and with optimized width (�w � 36 4. )
gives P f2 0 0073� . , which may not be small enough.
The pulse shape of Eq. (27), optimized with only
first two components (21 0 2331� � . , 22 0 2916� . ),
on the other hand, gives a probability as small as
P f2

516 10� �. • , for the same pulse duration. It is not
easy to reach a small P f2 with a shorter pulse.

In the charge-phase (quantronium) qubit of Ref. 4,
� 	 0 2. , �R - 100 MHz, and �0 16	 GHz. We there-
fore obtain | | .u 	 0 0063, and with | | | |v u- , using (24)
we find Pmax - �5 10 4• for a hard pulse, which is rea-
sonably small. The quality factor for the Rabi oscil-
lation, however, is QR 	 150 much smaller than
Q� � 25000 quoted in [4]. Increasing the Rabi fre-
quency will increase the probability Pmax. With the
help of a Gaussian pulse shape (with optimal width
�w � 15 3. ), a pulse duration of �p � 50 (quality factor
Q Qshaped 	 0 06. �) is achievable with P f2 0 0026� . .
Again, significant improvement in the probability
( . •P f2

69 3 10� � ) can be achieved using Eq. (27), op-
timized keeping only two components in the series
( .21 0 4058� � , 22 01241� . ).

In practice, the shape of the pulse should be moti-
vated experimentally. For example, the jumps at the
ends of the pulses shown in Fig. 6 can only be realized
approximately. Such limitations should be considered
as a constraint in the optimization process. The mi-
nimization procedure may also be preformed experi-
mentally; trying different pulses with a few free pa-
rameters and probing the transition probability to the

upper levels. The main goal of this work was just to
demonstrate how effective an optimized pulse-shaping
can be.

6. Summary and conclusions

We have performed analytical and numerical inves-
tigations of Rabi oscillations in a three level system.
We showed that the probability P2 of finding the sys-
tem in the upper level oscillates with the Rabi fre-
quency �R. The maximum probability Pmax happens
close to half a Rabi period. We demonstrated that
P /Rmax - ( )� � 2, even beyond the RWA and when �
is large.

We also studied the effect of pulse shaping on P2.
We showed that with an appropriate pulse shape, one
can achieve small probability P2 at the end of the pro-
cess, although in the middle of the operation it may
become large. The duration and shape of the pulse can
be optimized to obtain the smallest P f2 in the shortest
time. For each type of necessary operation, a specific
pulse shape should be designed. In any case, smallness
of � limits how short the pulse can be and therefore af-
fects the speed of qubit operations.

It is also necessary to take into account the effect of
decoherence on the studied phenomenon. In practice,
however, only a few Rabi oscillations happen during
the operation. Thus, as long as the decoherence time of
the system is much longer than the Rabi period, our
conclusions remain valid even in the presence of
decoherence.

In this article, we considered only three levels. If
the anharmonicity of the system is very small, one
needs to consider more than three states. In Ref. 13,
about 10 states were taken into account in the numeri-
cal simulations. Finally, we should mention that hav-
ing a multi-level, instead of two-level, quantum sys-
tem is not necessarily a disadvantage, as long as
coherent control of all the levels is possible. There
have been proposals to use multi-level systems for
quantum computation [16].

The author is grateful to A.J. Berkley, W.N. Har-
dy, A. Maassen van den Brink, M.F.H. Steininger,
A.Yu. Smirnov, and A.M. Zagoskin, for fruitful con-
versations, and A.N. Omelyanchouk for discussion
and numerical advice.
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