131 research outputs found

    Surface plasmon resonance assisted rapid laser joining of glass

    Get PDF
    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm2 and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices

    Effect of antimony addition relative to microstructure and mechanical properties of continuous cast lead alloy

    Get PDF
    It is well documented that the addition of antimony in pure lead increases tensile strength and reduced elongation. The goal of the present work is to identify the cause of these phenomena by investigation of the effects of the addition of Sb (1.25 wt.%) on the structure of pure continuously cast lead and lead alloy rods. The microstructure and morphology of both pure lead and lead with 1.25 wt.% antimony were examined by digital optical microscope and scanning electron microscope respectively. Energy Dispersive X-ray Spectroscopy (EDX) was used to identify alloying elements. The results showed that the effect of additions of antimony on mechanical properties of lead-antimony alloys is mainly due to the solid solubility of the antimony. Distribution of the antimony results in a decrease in the grain size of the pure lead. These smaller grains mean higher strength so long as there is a homogeneous grain structure.</p
    corecore