25 research outputs found

    Nonlocal mixing of supercurrents in Josephson ballistic point contact

    Full text link
    We study coherent current states in the mesoscopic superconducting weak link simultaneously subjected to the order parameter phase difference on the contact and to the tangential to the junction interface superfluid velocity in the banks. The Josephson current-phase relation controlled by the external transport current is obtained. At phase difference close to pi the nonlocal nature of the Josephson phase-dependent current results in the appearance of two vortexlike states in the vicinity of the contact.Comment: 4 pages, 6 figures; to be published in Phys. Rev. B; e-mail: [email protected]

    Effect of point-contact transparency on coherent mixing of Josephson and transport supercurrents

    Full text link
    The influence of electron reflection on dc Josephson effect in a ballistic point contact with transport current in the banks is considered theoretically. The effect of finite transparency on the vortex-like currents near the contact and at the phase difference ϕ=π,\phi =\pi , which has been predicted recently \cite{KOSh}, is investigated. We show that at low temperatures even a small reflection on the contact destroys the mentioned vortex-like current states, which can be restored by increasing of the temperature.Comment: 6 pages, 8 Figures, Latex Fil

    DC SQUID based on the mesoscopic multiterminal Josephson junction

    Full text link
    A theory is offered for a novel device, mesoscopic four-terminal SQUID. The studied system consists of a mesoscopic four-terminal junction, one pair of terminals of which is incorporated in a superconducting ring and the other one is connected with a transport circuit. The nonlocal weak coupling between the terminals leads to effects of phase dragging and magnetic flux transfer. The behaviour of a four-terminal SQUID, controlled by the external parameters, the applied magnetic flux and the transport current is investigated. The critical current and the current voltage characteristics as functions of magnetic flux are calculated. In the nonlocal mesoscopic case they depend not only on the magnitude of the applied flux but also on its sign, allowing measurement of the direction of the external magnetic field.Comment: 11 pages, 4 figures, presented at the EUCAS 2001 conferenc

    Rabi oscillations in systems with small anharmonicity

    No full text
    When a two-level quantum system is irradiated with a microwave signal in resonance with the energy difference between the levels, it starts Rabi oscillations between those states. If there are other states close, in energy, to the first two, the microwave signal will also induce transitions to those. Here we study the probability of transition to the third state, in a three-level system, while Rabi oscillations between the first two states are performed. We investigate the effect of pulse shaping on the probability and suggest methods for optimizing the pulse shapes to reduce the transition probability

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR

    Josephson-phase qubit without tunneling

    Full text link
    We show that a complete set of one-bit gates can be realized by coupling the two logical states of a phase qubit to a third level (at higher energy) using microwave pulses. Thus, one can achieve coherent control without invoking any tunneling between the qubit levels. We propose two implementations, using rf-SQUIDs and d-wave Josephson junctions.Comment: REVTeX4, 4pp., 6 EPS figure files; N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: gate universality fleshed out, small fix in d-wave decoherence para, discussion expanded, two Refs. added. v3: some more Refs., a molecular example, and a few minor fixes; final, to appear in PRB Rapid

    Wigner distribution function formalism for superconductors and collisionless dynamics of the superconducting order parameter

    No full text
    A technique for studying collisionless dynamics of a homogeneous superconducting system is developed which is based on Riccati parametrization of the Wigner distribution function. The quantum evolution of the superconducting order parameter, initially deviating from the equilibrium value, is calculated using this technique. The effect of a time-dependent BCS paring interaction on the dynamics of the order parameter is also studied

    Quasiclassical calculation of spontaneous current in restricted geometries

    Get PDF
    Calculation of current and order parameter distribution in inhomogeneous superconductors is often based on a self-consistent solution of Eilenberger equations for quasiclassical Green's functions. Compared to the original Gorkov equations, the problem is much simplified due to the fact that the values of Green's functions at a given point are connected to the bulk ones at infinity (boundary values) by ``dragging'' along the classical trajectories of quasiparticles. In finite size systems, where classical trajectories undergo multiple reflections from surfaces and interfaces, the usefulness of the approach is no longer obvious, since there is no simple criterion to determine what boundary value a trajectory corresponds to, and whether it reaches infinity at all. Here, we demonstrate the modification of the approach based on the Schophol-Maki transformation, which provides the basis for stable numerical calculations in 2D. We apply it to two examples: generation of spontaneous currents and magnetic moments in isolated islands of d-wave superconductor with subdominant order-parameters s and d_{xy}, and in a grain boundary junction between two arbitrarily oriented d-wave superconductors. Both examples are relevant to the discussion of time-reversal symmetry breaking in unconventional superconductors, as well as for application in quantum computing

    Multi-Terminal Superconducting Phase Qubit

    Full text link
    Mesoscopic multi-terminal Josephson junctions are novel devices that provide weak coupling between several bulk superconductors through a common normal layer. Because of the nonlocal coupling of the superconducting banks, a current flow between two of the terminals can induce a phase difference and/or current flow in the other terminals. This "phase dragging" effect is used in designing a new type of superconducting phase qubit, the basic element of a quantum computer. Time-reversal symmetry breaking can be achieved by inserting a pi-phase shifter into the flux loop. Logical operations are done by applying currents. This removes the necessity for local external magnetic fields to achieve bistability or controllable operations.Comment: 7 pages, 3 figure

    Quasiclassical Theory of Spontaneous Currents at Surfaces and Interfaces of d-Wave Superconductors

    Full text link
    We investigate the properties of spontaneous currents generated at surfaces and interfaces of d-wave superconductors using the self-consistent quasiclassical Eilenberger equations. The influence of the roughness and reflectivity of the boundaries on the spontaneous current are studied. We show that these have very different effects at the surfaces compared to the interfaces, which reflects the different nature of the time reversal symmetry breaking states in these two systems. We find a signature of the ``anomalous proximity effect'' at rough d-wave interfaces. We also show that the existence of a subdominant order parameter, which is necessary for time reversal symmetry breaking at the surface, suppresses the spontaneous current generation due to proximity effect at the interface between two superconductors. We associate orbital moments to the spontaneous currents to explain the ``superscreening'' effect, which seems to be present at all ideal d-wave surfaces and interfaces, where d_{xy} is the favorite subdominant symmetry.Comment: 13 pages, 17 postscript figure
    corecore