12,256 research outputs found

    Rabi Oscillations in Systems with Small Anharmonicity

    Get PDF
    When a two-level quantum system is irradiated with a microwave signal, in resonance with the energy difference between the levels, it starts Rabi oscillation between those states. If there are other states close, in energy, to the first two, the Rabi signal will also induce transition to those. Here, we study the probability of transition to the third state, in a three-level system, while a Rabi oscillation between the first two states is performed. We investigate the effect of pulse shaping on the probability and suggest methods for optimizing pulse shapes to reduce transition probability.Comment: 7 pages, 7 figure

    Mesoscopic multiterminal Josephson structures: I. Effects of nonlocal weak coupling

    Full text link
    We investigate nonlocal coherent transport in ballistic four-terminal Josephson structures (where bulk superconductors (terminals) are connected through a clean normal layer, e.g., a two-dimensional electron gas). Coherent anisotropic superposition of macroscopic wave functions of the superconductors in the normal region produces phase slip lines (2D analogs to phase slip centres) and time-reversal symmetry breaking 2D vortex states in it, as well as such effects as phase dragging and magnetic flux transfer. The tunneling density of local Andreev states in the normal layer was shown to contain peaks at the positions controlled by the phase differences between the terminals. We have obtained general dependence of these effects on the controlling supercurrent/phase differences between the terminals of the ballistic mesoscopic four-terminal SQUID.Comment: 18 pages, 11 figure

    Macroscopic Resonant Tunneling in the Presence of Low Frequency Noise

    Full text link
    We develop a theory of macroscopic resonant tunneling of flux in a double-well potential in the presence of realistic flux noise with significant low-frequency component. The rate of incoherent flux tunneling between the wells exhibits resonant peaks, the shape and position of which reflect qualitative features of the noise, and can thus serve as a diagnostic tool for studying the low-frequency flux noise in SQUID qubits. We show, in particular, that the noise-induced renormalization of the first resonant peak provides direct information on the temperature of the noise source and the strength of its quantum component.Comment: 4 pages, 1 figur

    Persistent currents in mesoscopic rings and boundary conformal field theory

    Full text link
    A tight-binding model of electron dynamics in mesoscopic normal rings is studied using boundary conformal field theory. The partition function is calculated in the low energy limit and the persistent current generated as a function of an external magnetic flux threading the ring is found. We study the cases where there are defects and electron-electron interactions separately. The same temperature scaling for the persistent current is found in each case, and the functional form can be fitted, with a high degree of accuracy, to experimental data.Comment: 6 pages, 4 enclosed postscript figure

    Decoherence in adiabatic quantum computation

    Full text link
    We have studied the decoherence properties of adiabatic quantum computation (AQC) in the presence of in general non-Markovian, e.g., low-frequency, noise. The developed description of the incoherent Landau-Zener transitions shows that the global AQC maintains its properties even for decoherence larger than the minimum gap at the anticrossing of the two lowest energy levels. The more efficient local AQC, however, does not improve scaling of the computation time with the number of qubits nn as in the decoherence-free case. The scaling improvement requires phase coherence throughout the computation, limiting the computation time and the problem size n.Comment: 4 pages, 2 figures, published versio

    Non-Markovian incoherent quantum dynamics of a two-state system

    Full text link
    We present a detailed study of the non-Markovian two-state system dynamics for the regime of incoherent quantum tunneling. Using perturbation theory in the system tunneling amplitude Δ\Delta, and in the limit of strong system-bath coupling, we determine the short time evolution of the reduced density matrix and thereby find a general equation of motion for the non-Markovian evolution at longer times. We relate the nonlocality in time due to the non-Markovian effects with the environment characteristic response time. In addition, we study the incoherent evolution of a system with a double-well potential, where each well consists several quantized energy levels. We determine the crossover temperature to a regime where many energy levels in the wells participate in the tunneling process, and observe that the required temperature can be much smaller than the one associated with the system plasma frequency. We also discuss experimental implications of our theoretical analysis.Comment: 10 pages, published versio
    corecore