research

Decoherence in adiabatic quantum computation

Abstract

We have studied the decoherence properties of adiabatic quantum computation (AQC) in the presence of in general non-Markovian, e.g., low-frequency, noise. The developed description of the incoherent Landau-Zener transitions shows that the global AQC maintains its properties even for decoherence larger than the minimum gap at the anticrossing of the two lowest energy levels. The more efficient local AQC, however, does not improve scaling of the computation time with the number of qubits nn as in the decoherence-free case. The scaling improvement requires phase coherence throughout the computation, limiting the computation time and the problem size n.Comment: 4 pages, 2 figures, published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019