4 research outputs found
The Effect of Cash Conversion Cycle on Profitability of the firm: A Study of Oil & Gas and Engineering Sector of Pakistan.
The research is aiming at assessing the effect of cash conversion cycle on profitability of the firm. Three components are used to measure cash conversion cycle (CCC); average receivable period (ARP), average inventory period (AIP) and average payable period (APP). Henceforth, cash conversion cycle and its determinants are taken as Independent variables. The dependent variable is profitability being measured by return on asset (ROA). The data was collected with the help of pooled data containing a sample of 10 firms of two manufacturing sector such as Oil & Gas and Engineering, listed on PSX for the period 2010-2018. Regression and correlation techniques were used for analysis and come up with the outcomes that average receivable period and average inventory period have an adverse significant association with profitability of the firm except average payable period. In the end, there exists a highly negative significant association among CCC and firm’s profitability as ROA. The results showed that lesser the no. of days of CCC, the firm has greater profitability. This paper contributes to the literature, which shows the association amongst CCC and ROA. 
In silico identification of conserved miRNAs and their selective target gene prediction in indicine (Bos indicus) cattle.
The modern cattle was domesticated from aurochs, sharing its physiological traits into two subspecies Bos taurus and Bos indicus. MicroRNAs (miRNAs) are a class of non-coding short RNAs of ~22nt which have a key role in the regulation of many cellular and physiological processes in the animal. The current study was aimed to predict and annotate the potential mutations in indicine miRNAs throughout the genome using de novo and homology-based in silico approaches. Genome-wide mapping was performed in available indicine assembly by the homology-based approach and 768 miRNAs were recovered out of 808 reported taurine miRNAs belonging to 521 unique mature miRNA families. While 42 precursors were dropped due to lack of secondary miRNA structure, increasing stringency or decreasing similarity between the two genomes' miRNA. Increasing tendency of miRNAs incidence was observed on chr5, chr7, chr8, chr12 and chr21 with 19 polycistronic miRNA within 1-kilobase distance throughout the indicine genome. Notably, 12 miRNAs showed copy number variation. Eighteen miRNAs showed a mutation in their mature sequences in which eight were found in their seed region. Whilst in de novo based approach, 12 novel potential miRNAs on Y chromosome in indicine cattle along with a new miRNA (bind-miR-1264) on chrX were found. The final data set is annotated and explains the impending target genes that are responsible for enhanced immunity, heat tolerance and disease tolerance regulation in indicine. The study conforms to better understanding and perceptive approach towards indicine genome
Recommended from our members
Modular Microphysiological System for Modeling of Biologic Barrier Function
Microphysiological systems, also known as organs-on-chips, are microfluidic devices designed to model human physiology
in vitro
. Polydimethylsiloxane (PDMS) is the most widely used material for organs-on-chips due to established microfabrication methods, and properties that make it suitable for biological applications such as low cytotoxicity, optical transparency, gas permeability. However, absorption of small molecules and leaching of uncrosslinked oligomers might hinder the adoption of PDMS-based organs-on-chips for drug discovery assays. Here, we have engineered a modular, PDMS-free microphysiological system that is capable of recapitulating biologic barrier functions commonly demonstrated in PDMS-based devices. Our microphysiological system is comprised of a microfluidic chip to house cell cultures and pneumatic microfluidic pumps to drive flow with programmable pressure and shear stress. The modular architecture and programmable pumps enabled us to model multiple
in vivo
microenvironments. First, we demonstrate the ability to generate cyclic strain on the culture membrane and establish a model of the alveolar air-liquid interface. Next, we utilized three-dimensional finite element analysis modeling to characterize the fluid dynamics within the device and develop a model of the pressure-driven filtration that occurs at the glomerular filtration barrier. Finally, we demonstrate that our model can be used to recapitulate sphingolipid induced kidney injury. Together, our results demonstrate that a multifunctional and modular microphysiological system can be deployed without the use of PDMS. Further, the bio-inert plastic used in our microfluidic device is amenable to various established, high-throughput manufacturing techniques, such as injection molding. As a result, the development plastic organs-on-chips provides an avenue to meet the increasing demand for organ-on-chip technology