71 research outputs found

    Risk Factors and Outcomes Related to Pediatric Intensive Care Unit Admission after Hematopoietic Stem Cell Transplantation: A Single-Center Experience

    Get PDF
    Abstract To describe incidence, causes, and outcomes related to pediatric intensive care unit (PICU) admission for patients undergoing hematopoietic stem cell transplantation (HSCT), we investigated the risk factors predisposing to PICU admission and prognostic factors in terms of patient survival. From October 1998 to April 2015, 496 children and young adults (0 to 23 years) underwent transplantation in the HSCT unit. Among them, 70 (14.1%) were admitted to PICU. The 3-year cumulative incidence of PICU admission was 14.3%. The main causes of PICU admission were respiratory failure (36%), multiple organ failure (16%), and septic shock (13%). The overall 90-day cumulative probability of survival after PICU admission was 34.3% (95% confidence interval, 24.8% to 47.4%). In multivariate analysis, risk factors predisposing to PICU admission were allogeneic HSCT (versus autologous HSCT, P  = .030) and second or third HSCT ( P  = .018). Characteristics significantly associated with mortality were mismatched HSCT ( P  = .011), relapse of underlying disease before PICU admission ( P P  = .012), hepatic failure at admission ( P  = .021), and need for invasive ventilation during PICU course (

    Prostate volume index and prostatic chronic inflammation have an effect on tumor load at baseline random biopsies in patients with normal DRE and PSA values less than 10\u2009ng/ml: results of 564 consecutive cases

    Get PDF
    Background: To assess the association of prostate volume index (PVI), defined as the ratio of the central transition zone volume (CTZV) to the peripheral zone volume (PZV), and prostatic chronic inflammation (PCI) as predictors of prostate cancer (PCA) load in patients presenting with normal digital rectal exam (DRE) and prostate-specific antigen (PSA) <= 10 ng/ml at baseline random biopsies. Methods: Parameters evaluated included age, PSA, total prostate volume (TPV), PSA density (PSAD), PVI and PCI. All patients underwent 14 core transperineal randomized biopsies. We considered small and high PCA load patients with no more than three (limited tumor load) and greater than three (extensive tumor load) positive biopsy cores, respectively. The association of factors with the risk of PCA was evaluated by logistic regression analysis, utilizing different multivariate models. Results: 564 Caucasian patients were included. PCA and PCI were detected in 242 (42.9%) and 129 (22.9%) cases, respectively. On multivariate analysis, PVI and PCI were independent predictors of the risk of detecting limited or extensive tumor load. The risk of detecting extensive tumor load at baseline biopsies was increased by PSAD above the median and third quartile as well as PVI <= 1 [odds ratio (OR)=1.971] but decreased by PCI (OR=0.185; 95% CI: 0.088-0.388). Conclusions: Higher PVI and the presence of PCI predicted decreased PCA risk in patients presenting with normal DRE, and a PSA <= 10 ng/ml at baseline random biopsy. In this subset of patients, a PVI <= or >1 is able to differentiate patients with PCA or PCI

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Building segment-based maps without pose information

    Get PDF
    Abstract — Most map building methods employed by mobile robots are based on the assumption that an estimate of robot poses can be obtained from odometry readings or from observing landmarks or other robots. In this paper we propose methods to build a global geometric map by integrating scans collected by laser range scanners without using any knowledge about the robots poses. We consider scans that are collections of line segments. Our approach increases the flexibility in data collection, since robots do not need to see each other during mapping, and data can be collected by multiple robots or a single robot in one or multiple sessions. Experimental results show the effectiveness of our approach in different types of indoor environments. Index Terms — Map building, multirobot systems, scan matching, map merging, laser range scanners. I

    Scan Matching Without Odometry Information

    No full text
    We present an algorithm for merging two partial maps obtained with a laser range scanner into a single map. The mos

    Map Building without Odometry Information

    No full text
    The map building methods usually employed by mobile robots are based on the assumption that an estimate of the position of the robot can be obtained from odometry readings. In this paper we propose three methods that build a geometrical global map by integrating partial maps without using any odometry information. We focus on the problem of integrating a sequence of partial maps that specifies the order in which the partial maps must be integrated. Experimental results show the effectiveness of our approach in different types of environments
    • …
    corecore