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Building Segment-BasedMaps
Without Pose Information
Mobile robots can constructmaps of their surroundings using laser range scanners that

detect walls and vertical objects; no data on robot position and orientation is needed.

By Francesco Amigoni, Member IEEE, Simone Gasparini, Student Member IEEE, and

Maria Gini, Member IEEE

ABSTRACT | Most map building methods employed by mobile

robots are based on the assumption that an estimate of robot

poses can be obtained from odometry readings or from

observing landmarks or other robots. In this paper we propose

methods to build a global geometric map by integrating scans

collected by laser range scanners without using any knowledge

about the robots’ poses. We consider scans that are collections

of line segments. Our approach increases the flexibility in data

collection, since robots do not need to see each other during

mapping, and data can be collected by multiple robots or a

single robot in one or multiple sessions. Experimental results

show the effectiveness of our approach in different types of

indoor environments.

KEYWORDS | Laser range scanners; map building; map

merging; multirobot systems; scan matching

I . INTRODUCTION

Several methods for allowing mobile robots to build maps
of unknown environments have been proposed. To build a

map, a robot incrementally integrates newly acquired

sensor data within previously collected information using

knowledge about its own pose or the path it followed since

the last integration. Odometry and kinematic models of

motion are used to estimate the robot pose (i.e., its

position and orientation). Different types of sensors

(sonars, laser range scanners, and panoramic cameras)
have been used to collect information about the environ-

ment. Laser range scanners have become the sensor of

choice because of their accuracy and wide availability.

In the last few years, as detailed in the extensive survey

by Thrun [1], most of the methods developed for mapping

have been based on probabilistic techniques. The methods

have in common the fact they use a Bayes filter to recur-

sively compute the posterior probability over robot poses
and maps, given the previous sensor measurements and

motion commands. The methods differ in the assumptions

they make and in how they compute the posterior prob-

ability. Some methods operate online; others require mul-

tiple passes through the data and so are used offline.

The approach we present in this paper differs from the

methods mentioned above in the sense that we do not

assume any knowledge of robot pose and we use
exclusively range data to construct a bidimensional

geometric map composed of line segments. In particular,

we show how to build a global map of an environment by

merging the postprocessed results of the measurement

operations performed by laser range scanners, which we

call scans, without using any position information but

relying only on geometric information in the scans. Our

approach is similar in spirit to early work by Chatila and
Laumond [2] who used geometric descriptions of environ-

ments. The advantage of using geometric descriptions over

the more common grid-based representations is that line

segments can be represented with few numbers and

produce maps that are easier to use, as recently discussed,

for example, in [3]. Line segments are also easy to extract

automatically from range data.

One might wonder why we do not use odometry,
considering that odometric information is often available.

The major reason is that we want to use multiple robots to

build maps and we want to be able to interrupt the

mapping process and resume it at a later time without

having to reset the initial poses of the robots (this provides

a solution to the so-called kidnapped robot problem [4]).

In addition, we are interested in building maps with
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miniature robots, such as the robots described in [5],

where no odometry is available. Even if odometry can be

replaced in part by sensing (see, for instance, [6]), we

believe it is important to understand the implications of

not having odometry (which is often unreliable) and to

explore what are acceptable bounds on the error on the

initial pose of the robots.

In the following, we call scan a collection of line

segments obtained, as explained later in Section III-D,

from the points returned by a two-dimensional (2-D) laser

range scanner. Line segments approximate the points

returned by laser range scanners. More precisely, a line

segment is represented by its end points (extremes) ðx1; y1Þ
and ðx2; y2Þ in the reference frame of the map. We call

partial map the result of the integration of two scans, of a

scan and a partial map, or of two partial maps. Thus, in the

terminology used in this paper, a scan is a special case of a

partial map. Both scans and partial maps are collection of

line segments. The difference is that we assume the line

segments in a scan are ordered (clockwise or counter-

clockwise), while they are not in a partial map. Range data

can be collected by a single or different robots. We assume

that the robots move indoor on a 2-D surface and that walls

and vertical objects are at the height of the laser scan. No

other assumption is made about the environment to be

mapped: the environment is supposed to be unknown and

with no ground-truth maps available. Experiments dem-

onstrate that our method works both in regular and in

scattered environments.

This paper presents two main contributions. The first is

a method for integrating two partial maps (and, in

particular, two scans) relying exclusively on their geome-

try. We consider the angles between pairs of line segments

in the maps as a sort of Bgeometric landmarks[ [7] on

which our matching process is based: the idea is to match

angles of the two partial maps that are similar. This

method is robust to large displacements between the par-

tial maps, provided that the maps have an overlap con-

taining at least an angle representing the same portion of

the environment. The method integrates two partial maps,

S1 and S2, into a map S1;2 in three major steps:

1) find the possible transformations of S2 on S1;
2) evaluate the transformations to identify the best

transformation �t of S2 on S1;
3) apply the best transformation �t to S2 (obtaining S

�t
2)

and fuse the line segments of S1 and S
�t
2 to obtain S1;2.

When S1 and S2 are two scans, the first two steps above are
known in literature as scan matching.

The second main contribution of this paper is the

proposal of three methods for map merging that integrate a
sequence S1; S2; . . . ; Sn of n partial maps. The sequence

defines the order in which the partial maps must be

integrated; namely, S1 has to be integrated with S2, that in
turn has to be integrated with S3, and so on. We reduce the

merging of a sequence of partial maps to the iterated

integration of two partial maps.

Our approach for scan matching and map merging

without pose information has the advantage of being

independent from how the data have been collected. It is

indifferent if the scans are collected during a single session

or multiple sessions, by multiple robots or a single robot.

Robots can be added or removed at any time, and they do

not need to know their own position. For the experiments

in this paper, we used scans acquired by a single robot, but

all the results are applicable to multirobots. In this case,

the mapping process is centralized, with data collected to a

location and assembled in a map. More precisely, in a

multirobot scenario, our method can be applied at two

levels: at the individual robot level, the method integrates

the sequence of scans acquired by the robot, and at the

global system level, the method integrates, less frequently,

the partial maps built by the robots.

The paper is structured as follows. In the next section

we outline previous work on scan matching and map

merging and compare it with our approach. We present our

scan matching method in Section III, and we illustrate our

map merging method in Section IV. Section V covers the

experimental validation of our contributions. Section VI

concludes the paper.

II . RELATED WORK

Robotic mapping addresses the problem of acquiring

spatial models of physical environments through mobile

robots [1]. These spatial models, or maps, are typically used
for robot navigation, for example, to plan paths. In order to

build a map, robots use sensors like sonars, cameras, and

laser range scanners. The range limitations of these

sensors force the robots to navigate in the environment

while building the map. As a consequence, maps are built

incrementally, integrating the newly perceived informa-

tion within the already available map. Usually, this in-

tegration exploits the (uncertain) knowledge about robot

poses. Maps can be represented topologically (e.g., by

graph-based data structures) or geometrically (e.g., by data

structures storing grids, points, or line segments). Since

grid-based maps require high-dimensional representations

with thousands of numbers, segment-based maps have

been recently advocated to reduce dimensionality [3].

Multirobot mapping has attracted attention in recent

years because of the robustness of exploring in parallel

with multiple robots and of the potential savings in the

time needed to map large areas. A key challenge in

multirobot mapping is merging the maps produced by

independent robots. The methods proposed in the lit-

erature to address the map merging problem have been

mostly based on building robot centric maps and merging

them using the relative positions of the robots, which must

be known.

One way of doing this is to extend Simultaneous

Localization and Mapping (SLAM) or Concurrent Map-

ping and Localization (CML) techniques [8]–[10] to



multirobots. SLAM and CML techniques are widely em-

ployed in the context of single robot mapping and refer to

the problem of building a map and, at the same time, esti-

mating the pose of the robot. Since odometric measure-

ments are noisy [11], robot localization cannot rely only on

dead-reckoning, and a probabilistic machinery is employed

to localize the robot in the map that is being constructed. A

family of approaches adopts Kalman filtering [12], [13] in

an incremental process that estimates robot pose and

landmarks’ positions in the map. This solution

requires a large computational effort as the number

of features in the map grows, and it is also not well

suited to dynamic environments and environments

with indistinguishable landmarks. Another proba-

bilistic approach is based on the expectation–

maximization (EM) algorithm [14]–[17] and is

usually employed to build grid-based maps. Robot

pose is tracked by a multimodal probability density

function which copes well with the correspondence

problem (i.e., having to associate sensor data with features

in the map) and with failure recovery. To alleviate the

computational burden, faster methods have been de-

veloped, including particle filters [9] and FastSLAM [18].

Most map merging techniques rely on the assumption

that the robot poses are known. For example, in [8] and

[14], the pose of the robots is assumed to be known at all

times; in [16], the robots do not know their relative starting

positions but each robot has to start within sight of the team

leader; in [17], the robots must start in known nearby

locations; in [19], the robots have to see each other from

time to time. In [20], a stationary robot continuously tracks

the motion of another robot which acquires sensory data

from the environment. In [9], particle filters are used for

partial map localization. The robots have to actively verify

their relative poses before the maps are merged, and the

integration of partial maps is not fully automated. In [21], a

single robot is used with FastSLAM to generate maps

directly from laser range data. The method aligns a scan to

the previous one by computing an occupancy grid map [22].

The method, which requires a model of the odometry error,

is robust and converges even in cases where the standard

Rao–Blackwellized particle filter [23] without odometry

correction fails to converge.

An exception is the work reported in [24], where map

merging is done using a decision theoretic approach. The

robots do not need to know their own position, but the

maps have to be annotated with distinctive features. This

step is currently done manually. The match is done not

with individual scans but with patches made of 15 scans

taken 0.5 m apart, each of them containing two to eight

distinctive features. This is an improvement over earlier

work [25], where map merging was done by correlation of

a patch over a partial map. The method required the scans

to be taken close to each other (30 cm in the examples

shown), and a very good scan matching algorithm, since

map merging could not be undone.

The approach we present in this paper is based on

building geometric maps, which are represented as collec-

tions of line segments, from scans, which are also collec-

tions of line segments. In the literature, scans are either

based on line segments or on raw sensor data. Scan match-
ing is the process of calculating the translation and rotation
of a scan to maximize its overlap with a reference scan.

Lu and Milios [26], [27] introduced the idea of con-

sistent pose registration, where scans from a laser range

scanner taken at different poses are matched using a priori
information and odometry constraints between successive

poses. The algorithm does multiple passes through the

data, so it is not real-time. The algorithm iteratively min-

imizes an error measure by first finding a correspondence

between points in the two scans, and then doing a least

square minimization of all the point-to-point distances to

determine the best transformation. An initial pose es-

timate is provided through odometry to avoid erroneous

alignments. The method works very well when the errors

in the initial position are small (G 20 cm).

Another well-known technique for scan matching is the

iterative algorithm of Cox [28] for matching range scans to an

a priori map of line segments. Since it assumes small

displacements between a scan and the map, the algorithm

first finds the correspondence between scan points and line

segments and then calculates the translation and rotation that

minimize the (square of all) point-to-segment distances. The

two steps are repeated until the process converges. Each

iteration returns a position correction vector and a variance–

covariance matrix that evaluates the match. This approach

has been extended in [29], where line segments are ex-

tracted from the previous scans and used as the reference

model for matching, instead of using an a priori model of the

environment. These methods can be applied only to poly-

gonal environments, a limitation that our method tries to

overcome.

With straight perpendicular walls, matching can be

done using histograms, as in [30], where the orientation is

computed by cross correlation of the histograms of the

angles between the actual and previous scans, and the

translation by cross correlation of the distance histogram.

This method is sensitive to large displacements between

the maps and to changes in the environment. The improve-

ment proposed in [31] deals with nonperpendicular walls

and segment maps, even if it still assumes straight walls

and has poor performance in scattered environments.

The robots have to actively verify
their relative poses before the
maps are merged, and the
integration of partial maps
is not fully automated.



In [32], line segments are extracted from range points

and a special Bcenter of gravity[ representation is used to

describe the uncertainty of line segments. Pairs of line

segments are matched and the translation is computed by

least square minimization, using an initial estimate for the

displacement provided by odometry. The technique

proposed in [33] refines the alignment of scans collected

by multiple robots using the partial Hausdorff distance to

compute the best transformation between a new scan and a

point map of the previously explored region. This method

also requires an initial estimate of the pose of the scans.

The method proposed in [34] is similar to our approach in

that it extracts line segments from laser range scanner

readings and builds incrementally a global map. It first

determines the relative orientation of the two maps by

computing the histogram of the angle differences and then

adjusts the translation by overlapping the line segments

using least square minimization. The method works for

linear and static environments and for very small dis-

placements. Our method is more general and allows for

significant displacements between two partial maps, pro-

vided that they have at least a corresponding angle repre-

senting the same portion of the environment.

There have been a few attempts to match scans

independently of odometry. For example, [35] proposes to

use a panoramic range finder to build segment maps. It

identifies line segments representing walls or other boun-

daries of the environment and matches the scans taken

from different positions without relying on any additional

source of information. This is accomplished by applying a

dynamic programming algorithm to the vertical lines of the

map. The method operates in polygonal or rectilinear

environments, but does not work well in scattered envi-

ronments, and it (implicitly) relies on small displacements

of the robot. In [36], segment maps are matched by estab-

lishing a correspondence between their features. This is

reduced to measure shape similarity between polylines ac-

cording to their maximal convex arcs, following a method

originated in computer vision. Although no data are re-

ported about the displacement of the maps, from the

reported experiments it can be inferred to be around 0.5 m.

In [37], a scan matching algorithm extending geometric

hashing is proposed. The main idea is a signature

representation of the local region around each point of

the scan. The search for the best alignment between two

scans is performed with a voting system in the Hough

space containing all the signatures. The candidate align-

ment is then applied to the measurement model of the

SLAM framework. From the reported experimental data, it

seems that the system is implicitly based on small dis-

placement between two scans, about 20–30 cm. The scan

matching method proposed in [38] does not use informa-

tion about odometry to compute the alignment between

two scans. It is based on geometric features of the maps,

the so-called Complete Line Segment relationships. All the

line segments that completely represent real objects in the

environment are singled out and their relative position is

used to find a correspondence with the Complete Line

Segments of the old map. The method has been shown to

be fast and accurate, even if it is not clear how it can deal

with ambiguity and the case of nonoccluded but partially

visible line segments (features that go beyond the visibility

region of the sensor). It also seems that it cannot be

extended to multirobot map building with unknown

position of the robots, since it is weakly based on a sorting

order of the line segments to improve search efficiency.

III . METHOD FOR SCAN INTEGRATION

In this section, we present our method for integrating

two scans. The method works in the three steps out-

lined in Section I. Our algorithm integrate (reported as

Algorithm 1) is exclusively based on the geometric in-

formation and constraints [7] contained in the scans. In

particular, we consider angles between pairs of line segments

in the scans as a sort of Bgeometric landmarks[ on which the

matching process is based. This use of Blocal[ geometric

features is significantly different from other related works in

map building that use Bglobal[ geometric features (e.g.,

those represented by an histogram of angle differences).

Integrate integrates two scans into a partial map. Let

us call S1 and S2 the two scans and S1;2 the resulting partial
map. Although in the following we discuss, for simplicity,

the integration of two scans, all the methods are applicable

to the integration of two partial maps. In the algorithms

below, two points are considered to coincide when they

are closer than PointDistanceTolerance (in our experi-

ments we set this parameter to 15 mm) and two angles are

considered equal when their values differ of less than

AngleDifferenceTolerance (in our experiments we set

this parameter to 0.2 rad).

Algorithm 1Vintegrate

Input: two scans S1 and S2
Output: a map S1;2

1)T all transformations of S2 on S1 . see Algorithm 2

2)�t best transformation in T . see Algorithm 4

3)S1;2  fusion of S1 and S�t2 . see Algorithm 5

A. Find Transformations
This step, given the scans S1 and S2, first finds the

angles between the line segments in S1 and between the

line segments in S2 and, second, finds the possible

transformations (namely, the rotations and translations)

that superimpose at least one angle �2 of S2 to an equal

angle �1 of S1. We use the angles between pairs of line

segments as geometric landmarks, and we try to match

equal angles in the two scans. The pseudocode is reported



as Algorithm 2. Finding the possible transformations is a

difficult combinatorial problem, since in principle, with-

out any information about the relative poses of the two

scans, there are Oðn21n
2
2Þ possible transformations, where

n1 and n2 are the numbers of line segments in S1 and S2,
respectively. We have therefore devised three heuristics

for reducing this complexity and finding a set of

(hopefully) significant transformations between two scans.

They are described in the following.

1) Consider Angles Between Consecutive Line Segments in a
Scan: In each scan, we select the angles between two

consecutive line segments; let Ac1 and A
c
2 be the sets of such

angles for S1 and S2, respectively. Two line segments are

consecutive when they have an extreme point in com-

mon. Then, we find the set of all the transformations that

make an angle in Ac2 to correspond to an equal angle in

Ac1. This amounts to changing step 3 (and step 7) of

Algorithm 2. The modified step adds an angle to A1 ðA2Þ
only when s1 and s01 (s2 and s02) are consecutive. The

number of possible transformations found by this method

is Oðn1n2Þ. We note that finding the sets Ac1 and Ac2 is

greatly facilitated when the line segments in S1 and in S2
are ordered. This is usually the case when scans are ac-

quired with laser range scanners, since the points re-

turned by the sensor are ordered counterclockwise and it

is straightforward to maintain the same order in the line

segments that approximate the points.

Algorithm 2VFind transformations

Input: two scans S1 and S2
Output: a set of transformations T

1) A1  empty

2) for all pairs of line segments s1 and s
0
1 ðs1 6¼ s01Þ in

S1 do
3) add to A1 the angle between s1 and s01
4) end for

5) A2  empty

6) for all pairs of line segments s2 and s02 ðs2 6¼ s02Þ
in S2 do

7) add to A2 the angle between s2 and s02
8) end for

9) T  empty

10) for all pairs of angles �1 2 A1 and �2 2 A2 do
11) if �1 ¼ �2 then

12) add to T the rototranslation that super-

imposes �2 to �1

13) end if

14) end for

Although this heuristic seems to perform well in indoor

environments where consecutive walls are usually per-

pendicular, the errors introduced by the sensor (for

example due to irregular reflection patterns) and by the

algorithm that approximates points with line segments

may alter the representation of these angles. Hence, the

angles between consecutive line segments sometimes do

not constitute a good model of the environment angles.

To improve the performance of this heuristic, we can

consider angles between consecutive line segments even

when the line segments do not have a common extreme

point (this could be done only if the line segments of the

scans are ordered). Moreover, consecutive line segments

can be considered to form a significant angle only if they

are longer than a fraction (specified by the parameter

SegmentLengthPercentage, set to an average value of

20 in our experiments) of the longest line segment in the

scan. The implicit assumption is that long line segments

are more reliable than short line segments in representing

the environment. Although this improvement gives good

results with scans, it is not easily applicable to partial maps

in which an order on the line segments is often hard to

define.

2) Consider Angles Between Randomly Selected Line
Segments in a Scan: In each scan, we examine a number

of angles between pairs of line segments selected

randomly. We assign a higher probability to be selected

to longer line segments, since they provide more precise

information about the environment. Let Ar1 and Ar2 be the

sets of the selected angles for S1 and S2, respectively. We

find the set of all the transformations that bring an angle in

Ar2 to correspond to an equal angle in Ar1. The number of

transformations generated by this method is Oða1a2Þ,
where a1 ¼ jA

r
1j and a2 ¼ jA

r
2j are the number of angles in

Ar1 and Ar2, respectively.
Instead of assigning directly to each line segment the

probability of being selected (according to its length) and

of selecting a number a1 (respectively, a2) of pairs, the

following approximate and easy-to-implement technique is

employed. Initially only line segments longer than

SegmentDivisionFactor (set to 0.5 in our experiments)

times the length of the longest line segment in S1
(respectively, S2) are considered for selection. All the

line segments considered have equal probability of being

selected. Then, we proceed to iterate with k ¼ 1; 2; . . . ;K.
In the k-th iteration, we use a threshold equal to

SegmentDivisionFactork times the length of the longest

line segment in S1 (respectively, S2). Out of the line

segments longer than this threshold we select one with

equal probability. Thus, the parameter SegmentDivision-

Factor determines the length of the line segments that are

considered for selection and, implicitly, the probability of

selection. The pseudocode of the algorithm is reported as

Algorithm 3. This technique tries first to find trans-

formations based on angles between long line segments;

then it progressively considers transformations based on

angles between shorter and shorter line segments. The

above technique can be further improved by stopping the

generation of transformations when a Bgood enough[



transformation is found. (The evaluation of the quality of a

transformation is discussed in Section III-B.)

3) Consider Angles Between Perpendicular Line Segments in
a Scan: In each scan, we select only angles between per-

pendicular line segments. This amounts to changing step 3

(and step 7) of Algorithm 2. The modified step adds an

angle to A1 ðA2Þ only when s1 and s01 (s2 and s02) are

perpendicular. This heuristic is particularly convenient for

indoor environments, where the presence of regular walls

usually involves perpendicular line segments. To make this

heuristic more efficient, we used histograms. The histo-
gram of S1 (and, in similar way, that of S2) has nslots

buckets. Each bucket Li ði ¼ 0; 1; . . . ; nslotsÿ 1Þ contains
the line segments with orientation comprised between

�� i=nslots and �� ðiþ 1Þ=nslots, measured with re-

spect to a given reference axis. To each element Li of the
histogram is associated a value calculated as the sum of the

lengths of the line segments in Li. The principal direction of
an histogram is the element with maximum value. The

normal direction of an histogram is the element that is

�=2 rad away from the principal direction. In Fig. 1, the

histogram of a scan taken in an indoor environment is

shown (with nslots ¼ 18). The principal direction is the

element L9 and the normal direction is the element L0. Let
Ah1 and A

h
2 be the sets of angles formed by a line segment in

the principal direction and by a line segment in the

normal direction of the histograms of S1 and S2, respec-
tively. The set of possible transformations is then found

comparing the angles in Ah1 and Ah2. The number of pos-

sible transformations generated by the above heuristic is

Oðp1q1p2q2Þ, where pi and qi are the number of line

segments in the principal and normal directions of the

histogram of scan Si.

Algorithm 3VFind transformations based on angles

between pairs of randomly selected line segments

Input: two scans S1 and S2
Output: a set of transformations T

1) T  empty

2) for k ¼ 1; 2; . . . ;K do

3) for i ¼ 1; 2; . . . ;Nk do . Nk has been set to

20 � 2k in our experiments

4) pick up randomly two line segments s1 and
s01 ðs1 6¼ s01Þ from S1 that are longer than

SegmentDivisionFactork times the length of

the longest line segment in S1
5) �1  angle between s1 and s01
6) pick up randomly two line segments s2 and

s02 ðs2 6¼ s02Þ from S2 that are longer than

SegmentDivisionFactork times the length of

the longest line segment in S2
7) �2  angle between s2 and s02
8) if �1 ¼ �2 then

9) add to T the rototranslation that super-

imposes �2 to �1

10) end if

11) end for

12) end for

B. Evaluate Transformations
Every transformation found in the previous step needs

to be evaluated in order to identify the best one. To

determine the goodness of a transformation t we transform
S2 on S1 (in the reference frame of S1) according to t
(obtaining St2), then we calculate the approximate length of

the line segments of S1 that correspond to (namely, match

with) line segments of St2. The transformation value is the
length of the corresponding line segments that the

transformation produces. More precisely, the value of a

transformation is the sum of all the matching values

calculated for every pair of line segments s1 2 S1 and

st2 2 St2. The matching value between two line segments s1
and st2 is calculated as follows. We project st2 on the line

supporting s1 thus obtaining a projected line segment st2p
and then we compute the length l1 of the common part of

s1 and st2p; we do the same but projecting s1 on st2,
obtaining l2. The matching value of s1 and st2 is calcu-

lated as the average of l1 and l2. When s1 and st2 do not

intersect, the matching value is multiplied by

0:95dðs1;s
t
2Þ=POINTDISTANCETOLERANCE to penalize the match be-

tween line segments that are far away. Note that 0.95 is

an empirical constant whose value has been determined

during experimental activities. dðs1; s
t
2Þ is the distance

between two line segments, calculated as in [7]

dðs1; s2Þ¼min max dist s1; startðs2Þð Þ; dist s1; endðs2Þð Þð Þ;ð

max dist s2; startðs1Þð Þ; dist s2; endðs1Þð Þð ÞÞ

where start and end are the extremes of a line segment

and distðs; pÞ is the Euclidean distance between point p
and the line supporting segment s (Fig. 2; note that

Fig. 1. The histogram of a scan.



s1 2 S1 and s2 2 S2). Note that, usually, in computer

graphics and in computer vision, the distance between

two sets of points A and B is calculated as the Hausdorff
distance HðA; BÞ ¼ maxðhðA; BÞ; hðB; AÞÞ, where hðA; BÞ ¼
maxa2Aðminb2Bðkaÿ bkÞÞ, and k � k is the Euclidean dis-

tance. One can show that dðs1; s2Þ � Hðs1; s2Þ for any

segment s1 and s2. The role of penalization for two pairs

of line segments is illustrated in Fig. 3, where line seg-

ments belonging to different scans are represented by

continuous and dotted lines, respectively. When two line

segments have a positive matching value they (suppos-

edly) represent the same part of the environment.

Finally, two special cases can appear during the

evaluation of the matching value of s1 and s
t
2. The matching

value is set to zero when the two line segments are too far

away, namely, when the ratio of dðs1; s
t
2Þ to PointDis-

tanceTolerance is larger than SegmentDistanceThres-

hold. SegmentDistanceThreshold is usually set to 5 to

obtain good experimental results. The transformation is

discarded when the two line segments intersect and are

longer than SegmentLengthRefuse (usually set to 80 or

100 cm in our experiments). The pseudocode of the

algorithm s reported as Algorithm 4. (Steps 24–30 are

explained in the next section.)
The above algorithm evaluates a single transformation

by considering all the pairs of line segments of the two
scans that are Oðn1n2Þ. A way to limit this computational
effort is to stop the evaluation of a transformation t when
its value cannot be larger than the current maximum,
namely, when the length of the line segments of S1 (or S

t
2)

whose matching value has been not yet calculated is less
than the difference between the current value of t and the
current maximum.

C. Apply the Best Transformation and Fuse the Scans
Once the best transformation �t has been found, the

third and last step of our scan integration method

transforms the second scan S2 in the reference frame of

S1 according to �t, obtaining S�t2.
Because of calculation, scan, and matching errors, the

scans might not align exactly. To produce the output

map S1;2 we first replace each matching chain created in

steps 24–30 of Algorithm 4 with a polyline, and we add

the resulting polylines to the unmatched line segments of

S1 and S�t2.

Algorithm 4VFind the best transformation

Input: two scans, S1 and S2, and a set of

transformations T
Output: the best transformation �t in T

1) btv 0 . current best transformation value

2) for all t 2 T do

3) St2  transform S2 according to t
4) tv 0 . value of t
5) for all pairs of line segments s1 2 S1 and

st2 2 St2 do
6) if s1 and st2 intersect and both are longer

than SegmentLengthRefuse then

7) consider the next transformation

. next iteration of the outer for

8) end if

9) if dðs1; s
t
2Þ/PointDistanceTolerance 9

SegmentDistanceThreshold then

10) consider the next pair of line segments .
next iteration of the inner for

11) end if

12) st2p  projection of st2 on line supporting s1;
s1p  projection of s1 on line supporting st2

13) l1  length of common part of s1 and st2p;
l2  length of common part of st2 and s1p

14) mv ðl1 þ l2Þ=2 . matching value

15) if s1 and st2 do not intersect then

16) mv mv�
0:95dðs1;s

t
2Þ=POINTDISTANCETOLERANCE . penalization

17) end if

18) tv tvþ mv
19) end for

Fig. 3. Different values for the penalization for the pair of line segments shown. (a) penalization¼ 0:9150. (b) penalization¼ 0:9735.

Fig. 2. The distance between s1 and s2 is dðs1; s2Þ ¼ minðmaxða;bÞ;

maxðc;dÞÞ, where the marked angles are equal to �=2.



20) if tv 9 btv then
21) �t t; btv tv
22) end if

23) end for

24) for all pairs of line segments s12 S1 and s
�t
22 S�t2 do

25) if ðs1; �Þ or ð�; s
�t
2Þ already belongs to a matching

chain C relative to �t then
26) add to C the pair ðs1; s

�t
2Þ

27) else

28) create a new matching chain relative to �t
and add to it the pair ðs1; s

�t
2Þ

29) end if

30) end for

A matching chain relative to transformation �t for the

pair of scans S1 and S�t2 is the set C ¼ fhs1; s
�t
2ijs1 2

S1 and s�t2 2 S�t2 have a positive matching value for �tg alge-
braically closed under line segment belong-to relation.

Specifically, a matching chain C is such that if hs1; s
�t
2i 2 C,

then all the line segments s that have a positive matching

value (namely, have matched) with s1 or s
�t
2 belong to C;

i.e., hs1; si 2 C and hs; s�t2i 2 C. We explicitly note that,

given an element hs1; s
�t
2i, the matching chain C that con-

tains (that is generated by) hs1; s
�t
2i is uniquely identified. It

is easy to see that a transformation �t generates a set of

(disjoint) matching chains.

Each matching chain (i.e., each set of pairs of

corresponding line segments) is fused in a single polyline,

which then replaces the corresponding line segments in

the final map. Therefore, the final map is obtained by

adding the polylines that represent the matched line seg-

ments (i.e., the line segments in the matching chains) to

the unmatched line segments of S1 and S
�t
2. The pseudocode

is in Algorithm 5 and an example is shown in Fig. 4.

We build the polyline that approximates the line

segments in a matching chain C by iteratively building a

sequence of approximating polylines P0; P1; . . . that con-
verges to the polyline P that adequately approximates (and

substitutes in the resulting map) the matching line

segments in C. The polyline P0 is composed of a single

line segment connecting the pair of farthest points

(extremes of the line segments) in C. Given the polyline

Pnÿ1, call s the line segment in (a pair belonging to) C that

is at the maximum distance from its (closest) corre-

sponding line segment �s in Pnÿ1. If the distance dðs;�sÞ is
less than the acceptable error FusionTolerance (set to

15 mm in our experiments), then Pnÿ1 is the final approx-
imation P. Otherwise, s is inserted in Pnÿ1 to substitute �s
and s is connected to the two closest line segments in Pnÿ1
to obtain the new polyline Pn.

The above algorithm is not guaranteed to terminate

within a given time bound, because line segments in C can

be considered an unpredictable number of times in

building the approximating polyline. For this reason, we

implemented a greedy version of the above (plain)

algorithm in which a line segment s in (a pair in) C is

considered only once for insertion in the polyline. The

greedy method produces approximate polylines that are

more Bclean[ than those produced by the plain method

(Fig. 5). Moreover, given a matching chain C, the greedy

version of the algorithm is guaranteed to terminate in OðcÞ
iterations, where c is the number of pairs in C. Note that,
strictly speaking, the fusion of the scans presented in this

section is not part of scan matching, as it is intended in

Fig. 4. An example of iterative construction of an approximating polyline, shown in black, for a matching chain, shown with

two levels of gray. (a) Matching chain. (b) First iteration. (c) Second iteration. (d) Third iteration.

Fig. 5. A matching chain (in black and gray) and the resulting polyline

(dotted line). (a) Matching chain. (b) Polyline with plain method.

(c) Polyline with greedy method.



literature. However, we use it in integrate to reduce the

complexity (i.e., the number of line segments) of the

resulting map.

Algorithm 5VFusion of two scans

Input: two scans, S1 and S�t2, and a set of matching

chains fCg relative to �t
Output: the map S1;2

1) S1;2  empty

2) add to S1;2 the unmatched line segments of S1
and S�t2

3) for all C 2 fCg do
4) P0  line segment connecting the pair of

farthest points (extremes of line segments) in C
5) s line segment in (a pair in) C that is at

maximum distance from the line segment �s in P0
6) n 0

7) while dðs;�sÞ > FusionTolerance do

8) n nþ 1

9) Pn  Pnÿ1 after substituting �s with s and

adding line segments that connect s to the closest
line segments in Pnÿ1

10) s line segment in (a pair in) C that is at

maximum distance from its closest line segment �s
in Pn

11) end while

12) add the polyline Pn to S1;2
13) end for

D. Analysis of Approximation Errors
In this section, we present an analysis of the ap-

proximation errors introduced by the scan integration

method described above. We assume that the points

acquired by the laser range scanner are affected by an error

of � (typically, this value is around 1 cm). This means that

the real point in the environment lies within a circle

centered in the point returned by the sensor and with

radius �.
The points returned by the sensor are approximated

with a set of line segments following the approach

described in [39]. We operate in two steps: 1) the points

are grouped into clusters and 2) a polyline is generated to

fit the points in each cluster. In 1), we consider the

acquired points in counterclockwise order and we group in

the same cluster the consecutive points whose distance is

less than a threshold � (set to 20 cm in our experiments)

from their successors. In 2), we approximate the points in

a cluster by recursively building a polyline: initially it

connects the first and the last point in the cluster, then the

farthest point from the current polyline becomes a new

endpoint of the polyline; the process continues until all

points in the cluster are within a distance � (set to 25 mm)

from the polyline. Hence, the line segments in a scan

approximate the points perceived by the laser range

scanner. The polyline generation presented above resem-

bles that of [40] that builds clusters on the basis of angles

instead of distances. (Note that these polylines approxi-

mate perceived points in the postprocessing of scan

acquisition and are different from the polylines approxi-

mating matching chains in the fusion of scans.)

The clustering of points does not introduce any

approximation error. The threshold of the clustering

algorithm influences the number of polylines that are

created but not the precision with which the points are

approximated by these polylines. Since, in our experi-

ments, the maximum range of the laser sensor has been set

to 8 m and its angular resolution to 1�, two consecutive

points at the end of range of the sensor are separated by

about 14 cm (obtained from 8 m� sinð1�Þ). Hence, the
clustering threshold � has been set to 20 cm in order to

keep in the same cluster two consecutive points at the end

of the range. Once the points have been separated in

clusters, the generation of the polyline approximating the

points in a cluster introduces, by definition, a maximum

(worst case) error of �.
During scan integration, the fusion (see Section III-C)

of the line segments of two scans introduces other

approximation errors. More precisely, given a matching

chain C, the maximum (worst case) distance between a

line segment of the resulting polyline and a line segment

belonging to a pair in C (namely, a line segment of S1 or
S�t2) is FusionTolerance in the plain version of the fusion

Fig. 6. A schematic representation of the three map merging methods. (a) Sequential method. (b) Tree method. (c) Pivot method.



algorithm. Our greedy implementation introduces a

larger approximation error that has been experimentally

evaluated (on a sample of scans from Section V) to be

almost always less than 40 mm.

Globally, the approximation error introduced by our

scan integration approach is, in the worst case, �þ 40 mm,

given that the points returned by the sensor (on which the

algorithms work) are affected by an error of �.

IV. METHODS FOR MAP MERGING

The scan integration method discussed in the previous

section produces a map S1;2 ¼ INTEGRATEðS1; S2Þ. The ref-

erence frame of S1;2 coincides with the reference frame of

S1, since �t is a transformation that brings the reference

frame of S2 in the reference frame of S1. The main ad-

vantage of integrate is that, since it is not based on

information about the relative position of S1 and S2 and it

works with collections of line segments, it is applicable

indifferently to situations in which S1 and S2 are scans and
to situations in which S1 and S2 are partial maps. Ob-

viously, in this second case, the partial maps could contain

a larger number of line segments and the computational

time would be larger.

In this section, we describe three proposed methods

(schematically shown in Fig. 6) for integrating a

sequence S1; S2; . . . Sn of n partial maps by repeatedly

calling integrate. (These methods have been introduced

in [41].) Note that our contribution to the solution of the

problem of integrating a sequence of partial maps is a

step towards the solution of the more general (and

complex) problem of integrating a set of partial maps.

Some issues about this general problem are discussed in

Section V-C.

A. Sequential Method
The simplest method is the sequential method. It

operates as follows. The first two partial maps in the

sequence are integrated, the obtained map then is grown

by sequentially integrating the third partial map, and so

on. Hence, S1 is integrated with S2 to obtain S1;2, S1;2 is

integrated with S3 to obtain S1;2;3, and so on. Eventually,

the final map S1;2;...;n is constructed. In order to integrate n
partial maps, the sequential method requires nÿ 1 calls to

integrate. A problem with the sequential method is that,

as the process goes on, integrate is applied to a partial

map that grows larger and larger (it contains more and

more line segments). This will cause difficulties in the

integration of Si with large i, since Si could match with

different parts of the larger map S1;2;...;iÿ1.

B. Tree Method
To overcome the above problem, the integration of a

small partial map with a large partial map should be

avoided. This is the idea underlying the tree method, which
works as follows. Each partial map of the initial sequence is

integrated with the successive partial map of the sequence

to obtain a new sequence S1;2; S2;3; . . . ; Snÿ1;n of nÿ 1

partial maps. Then, each partial map of this new sequence

is integrated with the successive one to obtain a new

sequence S1;2;3; S2;3;4; . . . ; Snÿ2;nÿ1;n of nÿ 2 partial maps.

The process continues until a single final map S1;2;...;n is

produced.

The tree method always integrates partial maps of

similar size, since they approximately contain the same

number of line segments. The number of calls to

integrate required by the tree method to integrate a

sequence of n partial maps is nðnÿ 1Þ=2. Note also that,

while it is quite obvious that the sequential method can be

applied online (i.e., while the robot is moving), the most

natural implementation of the tree method is offline, since

it is not straightforward to devise an online algorithm for

the tree method that requires constant time, as n grows, to

Fig. 7. Spurious line segments that have not been fused together

in the final map.

Table 1 Scans Acquired in Our Laboratory (Line Segment Lengths Are in mm)



update the tree (some results about online implementation

are reported in Section V-B).

To speed up the tree method we have developed a

heuristic that, given a sequence of partial maps at any level

of the tree (let us suppose at level 0 for simplicity),

attempts to integrate the partial maps Si and Siþ2; if the
integration succeeds (for example, a success can be

experimentally determined by calculating if the value of

the best transformation returned by integrate is above a

threshold), the final result Si;iþ2 represents the same map

that would have been obtained with three integrations: Si
with Siþ1 to obtain Si;iþ1, Siþ1 with Siþ2 to obtain Siþ1;iþ2,
and Si;iþ1 with Siþ1;iþ2 to obtain Si;iþ1;iþ2. The number of

partial maps in the new sequence is reduced by one unit,

because Si;iþ2 substitutes both Si;iþ1 and Siþ1;iþ2. This

heuristic finds its natural applicability when the partial

maps Si and Siþ2 are already the result of a number of

integrations performed by the tree method and their

common part is significant. For example, in the sequence

produced at the level 3 of the tree technique the first

ðS1;2;3;4Þ and the third ðS3;4;5;6Þ partial maps have a

significant common part, since approximately half of the

two partial maps overlaps. This improves the robustness of

the method, since corresponding angles are likely to be

found in the two partial maps.

A problem with the tree method is caused by the

presence of Bspurious[ line segments in the integrated

maps, namely, line segments that correspond to the same

part of the real environment but that are not fused together

with the procedure of Section III-C, for example, because

their alignment is imprecise (Fig. 7). This problem is

exacerbated in the tree method, since the same parts of the

partial maps are repeatedly fused together and errors

accumulate.

C. Pivot Method
To avoid the problems of the sequential and tree

methods, we devised the pivot method that combines the

best features of the two above methods. This method starts

as the tree method and constructs a sequence

S1;2; S2;3; . . . ; Snÿ1;n of nÿ 1 partial maps starting from

the initial sequence. At this point, we note that S2 is part of
both S1;2 and S2;3 and that the transformation �t1;2 used to

integrate S1 and S2 provides the position and orientation of

the reference frame of S2 in the reference frame of S1;2. It
is therefore possible to transform S2;3 according to �t1;2 and
fuse the line segments of the partial maps S1;2 and S

�t1;2
2;3

to

obtain S1;2;3. In a similar way, S1;2;3;4 can be obtained from

S1;2;3 and S3;4 by applying to the latter the transformations
�t2;3 and �t1;2 and fusing the line segments of S1;2;3 and

S
�t2;3�t1;2
3;4

. Iterating this process, from the sequence

S1;2; S2;3; . . . ; Snÿ1;n the final map S1;2;...;n is obtained.

The pivot method integrates partial maps of the same

size, like the tree method, and requires nÿ 1 calls to

integrate, like the sequential method. (In addition it

requires nÿ 2 executions of the not-so-expensive step 3 of

integrate, see Algorithm 1.) Integrating the line seg-

ments of two scans only once, the pivot method reduces

the problem of spurious line segments. The pivot method

is also naturally implementable in an online system. The

problem of spurious line segments is reduced but not

completely eliminated by the pivot method; a way to

further reduce this problem is to fuse not S1;2 and S
�t1;2
2;3, but

S1;2 and S
�t1;3
3 , where �t1;3 is the composition of �t2;3 and �t1;2.

Table 2 Scan Integration Results Over the 31 Scans Acquired in Our Laboratory

Table 3 Interesting Scan Integration Examples (Times Are in s)



The pseudocode of the algorithm for this pivot method is

reported as Algorithm 6.

Algorithm 6VPivot method for map merging

Input: a sequence of scans, S1; S2; . . . ; Sn
Output: a final map S1;2;...;n

1) S1;2  integrate ðS1; S2Þ and store �t1;2
2) for i ¼ 3; 4; . . . ; n do

3) Siÿ1;i  integrate ðSiÿ1; SiÞ and store �tiÿ1;i
4) �t1;i  compose �t1;iÿ1 and �tiÿ1;i

5) S
�t1;i
i  transform Si according to �t1;i

6) S1;2;...;i  apply the fusion procedure (Algo-

rithm 5) to S1;2;...;iÿ1 and S
�t1;i
i

7) end for

V. EXPERIMENTAL RESULTS

The experimental validation of our methods has been done

both with data collected in our laboratory (Sections V-A

and V-B) and with data publicly available on the Internet

(Section V-C). In our laboratory, we used a SICK LMS 200

Fig. 8. Pairs of scans and resulting finalmaps (the arrows show line segments corresponding to the same object in the environment). (a) Scan S4.

(b) Scan S5. (c) Final map S4;5. (d) Scan S18. (e) Scan S19. (f) Final map S18;19. (g) Scan S25. (h) Scan S26. (i) Final map S25;26.



laser range scanner (mounted on a Robuter mobile plat-

form at a height of approximatively 50 cm) to acquire a

sequence of distance measurements along directions

separated by a programmable angle, 1� in our case)

sweeping 180�. The result of a sensing operation is thus a

set of points expressed in polar coordinates, with the

origin of the coordinate frame in the sensor itself. These

points are approximated by line segments, as described in

Section III-D.

For the experiments of Sections V-A and V-B we

acquired 31 scans (Table 1). The scans have been acquired

in different environments (forming a loop about 40 m

long) by driving the robot manually and without recording

any odometric information. We started from a laboratory, a

very scattered environment, then we crossed a narrow

hallway with rectilinear walls to enter a department hall, a

large open space with long perpendicular walls, and finally

we closed the loop reentering the laboratory (see the

dashed path in Fig. 12). The experiments have been

designed to include a variety of cases and to stress the

algorithms we propose. The correctness of the integrations

has been determined by visually evaluating the maps with

respect to the real environment. The displacements (both

translational and rotational) between the scans are

significant. The translational displacements are between

34 cm and 2.8 m, with an average of 1.2 m. The rotational

displacements are between 0.0035 and 1.73 rad, with an

average of 0.33 rad. (These values have been derived from

the automated matching of the scans performed by our

method.) These displacement values are much more than

those usually reported in literature. We note that large

displacements allow the mapping process to quickly cover

the environments with few steps.

The programs have been coded in ANSI C++ employ-

ing the LEDA libraries 4.2 and have been run on a 1-GHz

Pentium III processor with Linux SuSe 8.0. We stress that

our approach is independent of the robots used to acquire

the scan data, as shown in Section V-C; thus can be

naturally applied in a multirobot context, provided that the

scans are taken at the same height.

A. Scan Integration Experiments
For every pair of consecutive scans acquired in our

laboratory, we tested the basic method for scan integration

and the three heuristics, sometimes modifying the values

of the parameters. SegmentLengthPercentage ranged

from 2 (for scans with long line segments) to 40 (for scans

with short line segments). SegmentLengthRefuse

ranged from 80 cm (for scans with short line segments)

to 140 cm (for scans with long line segments).

Fig. 9. Scans taken in the lab entrance. (a) Scan S1. (b) Scan S2. (c) Scan S3.

Fig. 10. Scans taken in the hall. (a) Scan S27. (b) Scan S28. (c) Scan S29.



In general, our experimental results demonstrate that

the proposed scan integration method performs well

(Table 2), but not all the pairs can be integrated.

Twenty-eight pairs of scans out of 31 possible pairs (S31
is integrated with S1) have been correctly matched with at

least one of the heuristics presented in Section III (last row

of Table 2). Unsurprisingly, the histogram-based heuristic

worked well with scans containing long and perpendicular

line segments, like those taken in the hallway and in the

hall. The heuristic that considers consecutive line seg-

ments seems to work well in all three kinds of en-

vironment, even if sometimes it needs some parameter

adjustments.

Table 3 shows the results obtained by integrating three

interesting pairs of scans (see also Fig. 8). S4 and S5 were
taken inside the laboratory: they contain a large number of

short line segments, since the environment is highly

scattered. The heuristic that works better is that based on

consecutive line segments: it was able to find a good

transformation evaluating only two transformations. On

the other hand, the evaluation of all the possible

transformations is infeasible (over 40 000 matches to

evaluate!). S18 and S19 were taken along the hallway: they

contain fewer line segments than the previous scans and

are characterized by long rectilinear line segments. Even

in this case, evaluating all the transformations is expen-

sive, while the consecutive line segments heuristic per-

forms well. S25 and S26 were taken in the hall: they contain

only a few line segments, since the environment is

characterized by long rectilinear and perpendicular walls.

All the heuristics perform well in this case because,

starting from a small number of line segments, there are

only few transformations that are easy evaluated.

For scan pairs S1 ÿ S2 and S2 ÿ S3, our method was not

able to find the correct transformation. As shown in Fig. 9,

these scans contain many short line segments representing

scattered small objects (chairs, tables, robots, and boxes).

It is almost impossible, even for a human being, to find the

correct match between these scans without any prior

information about their relative positions. Similar pro-

blems emerged in the hall. For example, Fig. 10 shows

scans S27 and S28, where the second one has been taken

after rotating the robot about 100�. Since the environment

is large and has only a few objects that can be used as

reference, a drastic change of the field of view eliminates

any common reference between scans; thus, automatic

matching is impossible.

We now discuss the role of the parameters that

influence the performance of our scan integration method.

PointDistanceTolerance affects the matching value of

two line segments and the corresponding transformation.

In the same way, large values for SegmentDistance-

Threshold make line segments that do not represent the

same object in the environment to match; small values

reduce the number of matching line segments thus making

the method more sensitive to measurement errors. Large

values of AngleDifferenceTolerance facilitate the

search of the best transformation by allowing many

possible transformations to be considered, but their

evaluation requires more time.

B. Map Merging Experiments
The sequence of scans we considered for validating our

map merging methods is composed of 29 scans

S3; S4; . . . ; S31. We have excluded the three initial scans

from the sequence acquired in our laboratory because, as

Fig. 11. The finalmapobtainedwith the sequentialmethod for scans S1

to S22 and scan S23. (a) Final map. (b) Scan S23.

Fig. 12. The final map obtainedwith the treemethod (with the dashed

path followed by the robot).



discussed in Section V-A, they could not be integrated.

Moreover, in order to close the loop and complete the

experiments, scans from S27 to S29 (Fig. 10) were manually

integrated. In the following, we discuss the integration of

this sequence of scans done offline to test and compare all

the three methods presented above.

Fig. 11 shows the final map (composed of 278 line

segments) obtained with the sequential method. The

sequential method could not integrate all the scans in

order to close the loop: the method suddenly failed when

we tried to integrate S23. It is evident that S23 has only a

few short line segments in common with the rest of the

map. Furthermore, as already discussed, when the global

map grows during the sequential integration, the scan

matching becomes computationally very difficult because

the large number of line segments requires a high effort for

evaluating the possible transformations. For example, the

integration of S19 (composed of 28 line segments) with

S3;4;...;18 (composed of 247 line segments) takes 5.17 s.

Fig. 12 shows the final map (composed of 519 line

segments) obtained with the tree method. We applied the

standard tree method until level 3 of the tree, then we

applied the heuristic presented in Section IV-B to speed

up the process. As we went down in the tree, the size

of the maps grew larger and larger and the execution of

integrate slowed down. For example, the integration

of two partial maps (composed of 108 and 103 line

segments) at level 3 of the tree requires 12.8 s. Further-

more, as already noted, when we integrate large-sized

maps with many redundant spurious line segments that

represent the same part of the environment, the resulting

maps are noisier because of the error introduced when

attempting to integrate maps with many overlapping line

segments.

Fig. 13 shows the final maps obtained with the pivot

method. The map on the left is composed of 441 line

segments and has been built by fusing the partial map Siÿ1;i
with S

�tiÿ1;i
i;iþ1, while the map on the right is composed of 358

line segments and has been built by the optimized method

that fuses the partial map Siÿ1;i with S
�tiÿ1;iþ1
iþ1 . The second

map presents fewer spurious line segments and appears

more Bclean.[

We have preliminary tested the performance of the

online implementation of the map merging methods,

considering the subsequence of scans S3; S4; . . . ; S9 and the
consecutive line segment heuristic. Results are shown in

Table 4 in which the time needed to integrate a newly

acquired scan in the previous global map is reported. The

sequential and the pivot methods are the best options for

online implementation.

Given the nature of our approach, there is no a priori
guarantee that the final map is consistent. Actually, this is

Fig. 13. The final maps obtained with the pivot method. (a) Fusion of Siÿ1;i with S
�tiÿ1;i

i;iþ1. (b) Fusion of Siÿ1;i with S
�tiÿ1;iþ1

iþ1 .

Table 4 Computing Time (in s) for Online Map Merging



a critical issue for all map merging methods. In our case,

the consistency of the final map can be ensured by the user

who can validate each integration performed by the

method. A more flexible solution is to let the user set a

threshold for the value of the best transformation in

integrate. An integration is considered to be valid only

when its value (i.e., the value of its associated best

transformation, see Section III-B) is above the threshold.

By setting the values of the threshold smaller or larger, the

user can decide to be more or less confident with the

results produced by our method.

C. Further Experimental Results
To further validate our approach and to show that it

works also with different data, we applied it to the

stanford-gates1 data set available in the Robotics Data Set

Repository (Radish) [42] (thanks to B. Gerkey for

providing these data). This data set is a 30-min tour

Fig. 14. Scans and the map resulting from their integration. (a) Scan S518. (b) Scan S520. (c) Scan S522. (d) Resulting map.

Fig. 15. Scans and the map resulting from their integration. (a) Scan S316. (b) Scan S318. (c) Scan S320. (d) Resulting map.



through the first floor of Stanford University’s Gates

Computer Science Building, Stanford, CA. The robot used

to collect the data is a Pioneer 2DX with a forward-

pointing SICK LMS 200. The laser was running at high

speed (75 Hz scans) in the 10-mm, 1� mode. The data set

includes both laser data and odometry data. We considered

only laser data (about 115 000 laser scans!). For each scan

of the data set, we approximate the points acquired by the

laser range scanner by line segments, as described in

Section III-D. We call scans Sx, where x is the time (in

seconds) at which a scan has been acquired, according to

the timestamps reported in the data set. To obtain good

experimental results, we set some parameters to values

different from those used in the previous sections:

PointDistanceTolerance has been set to 10 mm and

SegmentDistanceThreshold to 10.

The first set of experiments we performed with the

stanford-gates1 data set is devoted to show that our

method can always find the correct integration between

two scans, provided that the two scans are taken close

enough. For example, scans S518 and S522 (taken 4 s apart)

are not correctly integrated with our method but, when

considering also S520, our method correctly integrates S518
with S520 and the result of this integration with S522

Table 5 Scan Integration Results Over 15 Pairs of Scans of the stanford-gates1 Data Set

Fig. 16. Local maps that could have been acquired by four different robots. (a) Local map L1. (b) Local map L2. (c) Local map L3. (d) Local map L4.



(Fig. 14). The same happens for scans S316, S318, and S320
(Fig. 15).

To corroborate the results of Table 2 and to compare

the heuristics for scan integration of Section III-A in a

different environment, we applied them to 15 pairs of

scans (the scans of each pair has been taken at 4 s

from each other) randomly selected from the stanford-

gates1 data set. Results are reported in Table 5. An

interesting future research direction could be the auto-

matic identification, given an environment, of the best

heuristic.

We also analyzed the robustness of our method with

respect to variations of the parameter values. To this end,

we considered three randomly selected pairs of scans of

stanford-gates1 data set, and we applied our scan inte-

gration method (with the consecutive line segment heu-

ristic) varying the values of PointDistanceTolerance,

AngleDifferenceTolerance, and SegmentDistance-

Threshold. The method has been able to correctly

integrate the pairs when the above parameters had values

within 3 mm and 13 mm for PointDistanceTolerance,

0.16 rad and 1.53 rad for AngleDifferenceTolerance,

and 8 and 131 for SegmentDistanceThreshold.

The last experiment we performed with the stanford-

gates1 data set is a simulation of a realistic multirobot

setting. We assumed that four mobile robots had

individually acquired four local maps of the environment

(Fig. 16). According to the two-level multirobot scenario

depicted in Section I, we built these local maps, called L1,
L2, L3, and L4, by integrating four sequences of 10 scans

(taken at 4 s from each other). Each local map Li has two
scans in common with the local maps Liÿ1 and Liþ1 (when
they exist). The total length of the line segments in each

local map is about 35 m. Our scan integration method has

been able to integrate correctly the pairs of local maps, as

shown in Fig. 17. The time required to integrate (with the

heuristic that considers consecutive line segments) two

local maps is about 20 s. Note that we tried to integrate all
the pairs of local maps. The correct matches have a best

transformation value of about 10 m, while the wrong

Fig. 17. The result of the integration of local maps. (a) Integration of L1 and L2. (b) Integration of L2 and L3. (c) Integration of L3 and L4.



matches have a best transformation value of about 5 m. For

example, the best transformation value between L3 and L4
is 14.8 m, while the best transformation value between L1
and L4 is 4.3 m.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach for

integrating pairs of partial maps composed of line

segments and for merging a sequence of partial maps in

order to build a global map. Our method works without

any information about the relative poses of the partial

maps but relies exclusively on their geometric features.

The advantage of using geometric features is that the

representation based on line segments is very compact and

the maps produced are easy to use. This is the major aspect

which distinguishes our approach from other robot

mapping methods reported in the literature. The methods

presented in this paper provide an elegant solution to the

problem of multirobot mapping, since they are indepen-

dent from where and by which robot the partial maps have

been acquired. Experimental results validate the effective-

ness of the approach for indoor environments.

In future research we plan on generalizing these

methods following the preliminary results of Section V-C,

to cases where the order in which the partial maps have to

be integrated is not known. This would happen, for

instance, when maps are created by different robots, since

we cannot assume the order in which the merging will be

done is the same as the order in which they have been

acquired. Note that the problem is not as severe as it might

appear unless the number of robots is very large. We will

also explore how adding positional information will affect

the performance of the methods and examine how

sensitive they are to pose errors. h
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