114 research outputs found

    Pseudomonas aeruginosa bloodstream infections: risk factors and treatment outcome related to expression of the PER-1 extended-spectrum beta-lactamase

    Get PDF
    BACKGROUND: Bloodstream infection (BSI) due to Pseudomonas aeruginosa (Pa) has relevant clinical impact especially in relation to drug resistance determinants. The PER-1 extended-spectrum beta-lactamase (ESBL) is a common enzyme conferring high-level resistance to anti-pseudomonal cephalosporins. Risk factors and treatment outcome of BSI episodes caused by PER-1-positive Pa (PER-1-Pa) strains were compared to those caused by ESBL-negative Pa isolates (ESBL-N-Pa). METHODS: Twenty-six BSI cases due to ceftazidime-resistant Pa strains have been investigated. MIC values of anti-pseudomonal drugs were determined by the Etest method (AB Biodisk, Solna, Sweden). The double-disk synergy test was used to detect ESBL production. PCR amplification and DNA sequencing were used to characterize ESBL types. Clinical records of BSI-patients were examined retrospectively. Demographic data, underlying diseases (McCabe-Jackson classification and Charlson weighted index), risk factors, antimicrobial therapy, and treatment outcome were evaluated in cases due to ESBL-positive and cases due to ESBL-N-Pa isolates. Unpaired Student's t-test, Mann-Whitney U-test, Fisher's exact test and the χ(2 )test were used for statistical analysis. RESULTS: Nine Pa isolates expressed the PER-1 ESBL; the remaining 17 isolates did not produce ESBLs. Severe sepsis (P = 0.03), bladder and intravascular catheters (both P = 0.01), immunosuppressive therapy (P = 0.04), and mechanical ventilation (P = 0.03) were significantly associated with BSI due to PER-1-Pa. Empirical treatment (P = 0.02) and treatment after ID/AST (P < 0.01) were rarely adequate in PER-1-Pa cases. With regard to treatment outcome, 77.8% BSI cases due to PER-1-Pa vs. 28.6% cases due to ESBL-N-Pa isolates failed to respond (P < 0.03). All cases due to PER-1-Pa that were treated with carbapenems (alone or in combination with amikacin) failed to respond. In contrast, 7/8 cases due to ESBL-N-Pa given carbapenems were responders. CONCLUSION: Therapeutic failure and increased hospital costs are associated with BSI episodes caused by PER-1-Pa strains. Thus, recognition and prompt reporting of ESBL-production appears a critical factor for the management of patients with serious P. aeruginosa infections

    Kinetic Study of Laboratory Mutants of NDM-1 Metallo-beta-Lactamase and the Importance of an Isoleucine at Position 35.

    Full text link
    peer reviewedTwo laboratory mutants of NDM-1 were generated by replacing the isoleucine at position 35 with threonine and serine residues: the NDM-1(I35T)and NDM-1(I35S)enzymes. These mutants were well characterized, and their kinetic parameters were compared with those of the NDM-1 wild type. Thekcat,Km, andkcat/Kmvalues calculated for the two mutants were slightly different from those of the wild-type enzyme. Interestingly, thekcat/Kmof NDM-1(I35S)for loracarbef was about 14-fold higher than that of NDM-1. Far-UV circular dichroism (CD) spectra of NDM-1 and NDM-1(I35T)and NDM-1(I35S)enzymes suggest local structural rearrangements in the secondary structure with a marked reduction of alpha-helix content in the mutants

    Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators

    Get PDF
    The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CL(pro). The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CL(pro). The compounds are slow-binding inactivators of 3CL(pro) with a K(i) of 3.95 μM and 3.77 μM for protocetraric and salazinic acid, respectively, and inhibitory efficiency k(inact)/K(i) at about 3 × 10(−5) s(−1)µM(−1). The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 μM, which is well below the K(i) values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CL(pro). The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors

    Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its Enzymatic Activity

    Get PDF
    Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found.Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation.In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression

    A Kinetic Study of the Replacement by Site Saturation Mutagenesis of Residue 119 in NDM-1 Metallo- beta-Lactamase

    Full text link
    New Delhi metallo- beta-lactamase 1 (NDM-1) is a subclass B1 metallo-beta - lactamase that exhibits a broad spectrum of activity against beta -lactam antibiotics. Here we report the kinetic study of 6 Q119X variants obtained by site-directed mutagenesis of NDM-1. All Q119X variants were able to hydrolyze carbapenems, penicillins and first-, second-, third-, and fourth-generation cephalosporins very efficiently. In particular, Q119E, Q119Y, Q119V, and Q119K mutants showed improvements in kcat/Km values for penicillins, compared with NDM-1. The catalytic efficiencies of the Q119K variant for benzylpenicillin and carbenicillin were about 65- and 70-fold higher, respectively, than those of NDM-1. The Q119K and Q119Y enzymes had kcat/Km values for ceftazidime about 25- and 89-fold higher, respectively, than that of NDM-1

    Exploring the role of L209 residue in the active site of NDM-1 a metallo-β-lactamase

    Get PDF
    Background: New Delhi Metallo-β-Lactamase (NDM-1) is one of the most recent additions to the β-lactamases family. Since its discovery in 2009, NDM-1 producing Enterobacteriaceae have disseminated globally. With few effective antibiotics against NDM-1 producers, there is an urgent need to design new drug inhibitors through the help of structural and mechanistic information available from mutagenic studies. Results/Conclusions: In our study we focus the attention on the non-catalytic residue Leucine 209 by changing it into a Phenylalanine. The L209F laboratory variant of NDM-1 displays a drastic reduction of catalytic efficiency (due to low kcat values) towards penicillins, cephalosporins and carbapenems. Thermofluor-based assay demonstrated that NDM-1 and L209F are stable to the temperature and the zinc content is the same in both enzymes as demonstrated by experiments with PAR in the presence of GdnHCL. Molecular Dynamics (MDs) simulations, carried out on NDM-1 and L209F both complexed and uncomplexed with Benzylpenicillin indicate that the point mutation produces a significant mechanical destabilization of the enzyme and also an increase of water content. These observations clearly show that the single mutation induces drastic changes in the enzyme properties which can be related to the observed different catalytic behavior
    • …
    corecore