635 research outputs found

    Convex Neighbourhoods and Complete Finsler Spaces

    Full text link
    In this paper, it is shown that a large set of connections on a suitable sub-bundle of the tangent bundle of a Finsler Manifold can be used to study all the properties of convex neighbourhoods with respect to the Finsler Metric, which are needed to see that any Complete Finsler Space is Geodesically Connected.Comment: 17 page

    Covariant second variation for first order Lagrangians on fibered manifolds II: generalized curvature and Bianchi identities

    Get PDF
    The notion of generalized curvature structures ensuing from the second variation of a (first–order) Lagrangian is extensively discussed. It is shown that generalized curvature structures satisfy appropriate (generalized) Bianchi identities. Formulae applicable to curvature Lagrangians are developed in great detail. Examples are taken from the theory of generalized harmonic Lagrangians

    Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the Province of Viterbo, Central Italy

    Get PDF
    The aim of the present study was to determine heavy metal reference levels for exposure and risk assessment studies on a local scale. We measured lead (Pb), chromium (Cr), zinc (Zn), copper (Cu) and cadmium (Cd) content in edible tissues and organs of wild boars harvested in dif- ferent areas of the Province of Viterbo, Central Italy. The average levels of cadmium recorded in 75 wild boars were 0.085, 0.079 and 1.052 mg Cd kg–1 wet weight (w.w.) in the liver, muscle and kidney, respectively. The majority of the muscle samples and some of the liver samples contained levels of heavy metal that were over the legal limit [EU Maximum Residue Levels (MRLs)] for pigs. Our data are similar to or lower than the val- ues reported in most of the available literature. For Pb concentration, the average values record- ed were 0.318, 0.126 and 0.298 mg kg–1 w.w. in the liver, muscle and kidney, respectively. The sam- ples that were non-compliant with regulatory limits (MRLs) for pigs were registered only for muscle. Available data on the presence of Pb con- tent in game meat report lower values than ours, most likely because the area around the bullet path was avoided while sampling. The average values of total Cr were 0.141, 0.139 and 0.097 mg kg–1 w.w. in the liver, muscle and kidney, respec- tively. For Zn, the mean values were 49.76, 53.21 and 32.46 mg kg–1 w.w. in the liver, muscle and kidney, respectively. Cu content was 46.12, 12.20 and 5.64 mg Cu kg–1 w.w. in the liver, muscle and kidney, respectively. The results obtained have been validated on the basis of the scarce and inconsistent Italian literature available and on international studies

    Theoretical model for the superconducting and magnetically ordered borocarbides

    Full text link
    We present a theory of superconductivity in presence of a general magnetic structure in a form suitable for the description of complex magnetic phases encountered in borocarbides. The theory, complemented with some details of the band structure and with the magnetic phase diagram, may explain the nearly reentrant behaviour and the anisotropy of the upper critical field of HoNi2B2C. The onset of the helical magnetic order depresses superconductivity via the reduction of the interaction between phonons and electrons caused by the formation of magnetic Bloch states. At mean field level, no additional suppression of superconductivity is introduced by the incommensurability of the helical phase.Comment: 8 pages, 2 figures. Published version, one important reference adde

    Trunk motion analysis: a systematic review from a clinical and methodological perspective

    Get PDF
    INTRODUCTION: This systematic literature review aims to check the current state of affairs of non-gait-related optoelectronic trunk movement analysis; results have been analyzed from a clinical and a methodological perspective. EVIDENCE ACQUISITION: Extensive research was performed on all papers published until December 31st, 2015, dealing with trunk movement analysis assessed by optoelectronic systems, excluding those related to gait. The research was performed on the 14th of January 2016 on three databases: Scopus, Science Direct and Pubmed. A reference search and expert consultation were also performed. EVIDENCE SYNTHESIS: Out of a total number of 8431 papers, 45 were deemed relevant: they included 1334 participants, 57.9% healthy, with age range 8-85. Few studies considered the whole trunk, and none focused on each vertebra independently: the trunk was almost always divided into three segments. Thirteen studies included 20 or more markers. Most of the papers focused mainly on the biomechanics of various movements; the lumbar area and low back pain were the most studied region and pathology respectively. CONCLUSIONS: This study has shown the relative scarcity of current literature focusing on trunk motion analysis. In clinical terms, results were sparse. The only quite well represented group of papers focused on the lumbar spine and pathologies, but the scarcity of individuals evaluated make the results questionable. The use of optoelectronic systems in the evaluation of spine movement is a growing research area. Nevertheless, no standard protocols have been developed so far. Future research is needed to define a precise protocol in terms of number and position of markers along the spine and movements and tasks to be evaluated

    Ultrasmall SnO2 directly grown on commercial carbon black: a versatile composite material for Li-based energy storage

    Get PDF
    Herein, we propose a hassle-free approach to prepare SnO2/C composite using a simple, fully sustainable, and economic synthesis process, in which tin oxide is in situ nucleated on commercial carbon black C-NERGYTM Super C45 (Imerys Graphite & Carbon) in form of homogenously distributed nanoparticles. The synthesis is carried out by wet impregnation without any acid treatment or high temperature process. We focused on the presence of the existing oxygen species on the carbon surface that are accessible for tin and promote Sn–O–C interactions, suggesting synergies between the two components, with an active role of the carbon support in the SnO2 conversion reaction. On one hand, in Li-ion technology, development of high-performance SnO2 anodes is hampered by its peculiar electrochemical behavior, characterized by two processes: conversion and alloying reactions. The conversion reaction being irreversible leads to specific capacities lower than theoretical, however rational design of nanosized SnO2 can mitigate this issue, though SnO2 low conductivity and electrode pulverization justify the need of carbon matrices. Some carbon structures proved to be strongly effective at laboratory-scale, but most are too expensive or complicated to obtain for scaling-up. Presence of oxygen species on C45 surface, accessible to tin, prevent fast formation of Li2O, allowing to achieve high capacity and extreme electrode stability. The assembled cells with SnO2 /C45 exhibit for more than 400 cycles the reversible capacity of 560 mA h g−1 per pure SnO2 (after subtracting C45 contribution) at 1C, demonstrating prolonged cycling operation thus providing an interesting opportunity for scalable production of stable and high-capacity battery anodes alternatively to graphite [1]. On the other hand, developing efficient and low cost electrocatalysts for ORR is fundamental to bring the Li-O2 technology closer to practical applications. The obtained composite material shows an optimal ORR activity with a final reduction mechanism following the 4 electrons pathway. This is confirmed in Li-O2 cells, indeed compared to pure C45 air-cathodes, the composite cathodes lead to the formation of much more reversible film-like discharge products, allowing for reduced overvoltage and therefore improved cycling performances both at the high current density of 0.5 mA cm-2 with more than 70 cycles and in prolonged discharge/charge conditions with over 1250 h of operation at the fixed capacity of 2.5 mAh cm-2 [2]. Considering the fast and inexpensive method used to prepare SnO2/C45, these results, in terms of reversible capacities and long cycling stability, are competitive among others obtained for SnO2-based materials synthetized by other methods such as hydrothermal, sonochemical, solvothermal, etc. All these considerations make the synthetic route reported a suitable and interesting approach for large scale production. References 1. D

    Phenomenological Theory of Superconductivity and Magnetism in Ho1−x_{1-x}Dyx_xNi2_2B2_2C

    Full text link
    The coexistence of the superconductivity and magnetism in the Ho1−x_{1-x}Dyx_xNi2_2B2_2C is studied by using Ginzburg-Landau theory. This alloy shows the coexistence and complex interplay of superconducting and magnetic order. We propose a phenomenological model which includes two magnetic and two superconducting order parameters accounting for the multi-band structure of this material. We describe phenomenologically the magnetic fluctuations and order and demonstrate that they lead to anomalous behavior of the upper critical field. The doping dependence of TcT_c in Ho1−x_{1-x}Dyx_xNi2_2B2_2C showing a reentrance behavior are analyzed yielding a very good agreement with experimental data.Comment: 4 pages, 3 figures, REVTeX, submitted to PR
    • 

    corecore