1,087 research outputs found

    Decomposable Principal Component Analysis

    Full text link
    We consider principal component analysis (PCA) in decomposable Gaussian graphical models. We exploit the prior information in these models in order to distribute its computation. For this purpose, we reformulate the problem in the sparse inverse covariance (concentration) domain and solve the global eigenvalue problem using a sequence of local eigenvalue problems in each of the cliques of the decomposable graph. We demonstrate the application of our methodology in the context of decentralized anomaly detection in the Abilene backbone network. Based on the topology of the network, we propose an approximate statistical graphical model and distribute the computation of PCA

    Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Get PDF
    Six years (2003-2008) of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS) and surface wind speeds from Quick Scatterometer (QuikSCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Special Sensor Microwave Imager (SSM/I), are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i) separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii) extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii) identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth

    Distributed learning of Gaussian graphical models via marginal likelihoods

    Get PDF
    We consider distributed estimation of the inverse covariance matrix, also called the concentration matrix, in Gaussian graphical models. Traditional centralized estimation often requires iterative and expensive global inference and is therefore difficult in large distributed networks. In this paper, we propose a general framework for distributed estimation based on a maximum marginal likelihood (MML) approach. Each node independently computes a local estimate by maximizing a marginal likelihood defined with respect to data collected from its local neighborhood. Due to the non-convexity of the MML problem, we derive and consider solving a convex relaxation. The local estimates are then combined into a global estimate without the need for iterative message-passing between neighborhoods. We prove that this relaxed MML estimator is asymptotically consistent. Through numerical experiments on several synthetic and real-world data sets, we demonstrate that the two-hop version of the proposed estimator is significantly better than the one-hop version, and nearly closes the gap to the centralized maximum likelihood estimator in many situations.

    Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens.

    Get PDF
    Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy (EM) imaging, chitosan-alginate NPs were found to induce the disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate NPs also exhibited anti-inflammatory properties as they inhibited P. acnes-induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide (BP), a commonly used antiacne drug, was effectively encapsulated in the chitosan-alginate NPs and demonstrated superior antimicrobial activity against P. acnes compared with BP alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate NP-encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components

    Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Get PDF
    The differences in North African dust emission regions and transport routes, between the boreal winter and summer, are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 yr of satellite data, in order to better characterize the different dust transport periods. We see a robust annual triplet: a discernible rhythm of transatlantic dust weather . The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes. The southern-route period lasts ~4 months. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months and is associated with a steady drift northward of ~0.1 latitude day−1, reaching ~1500 km north of the southern-route. The northern period is characterized by higher frequency of dust events, higher (and variable) background and smaller variance in dust loading. It is less episodic than the southern period. Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition, between the northern and southern periods, commences with an abrupt reduction in dust loading and rapid shift southward of ~0.2 latitude day−1, and ~1300 km in total. Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time

    OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds.

    Get PDF
    Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling
    corecore