731 research outputs found

    Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    Get PDF
    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The mixtures cover a RON range of 0-100, with the majority being in the 70-100 range. A parametric simulation study across a temperature range of 650-950 K and pressure range of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore, temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling the antiknock behavior of the fuels

    Security risk assessment and protection in the chemical and process industry

    Get PDF
    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including: management and procedures, security technology (e.g. CCTV, fences, and access control), and human interactions (pro-active as well as re-active). The method is illustrated in a case-study where a practical protection plan was developed for an existing chemical company. This chapter demonstrates that the method is useful for similar chemical- and process industrial activities far beyond the Belgian borders, as well as for cross-industrial security protection. This chapter offers an insight into how the chemical sector protects itself on the one hand, and an insight into how security risk management can be practiced on the other hand

    Bridging performance of new eco-friendly lost circulation materials

    Get PDF
    Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials (LCMs) were used to control the lost circulation of two types of drilling fluids, bentonite mud and a new eco-friendly mud, named RIA-X, which has a remarkable effect on decreasing the amount of lost circulation in fractured and highly permeable reservoirs. The Bridging Material Test (BMT) apparatus was used to investigate the effectiveness of various LCMs in fractures of various sizes and to select the LCM and combination with the best performance. The use of three-dimensional fractures is one of the most notable points of this work, which makes the experimental conditions similar to those of real wells. The lost control performance of the new eco-friendly LCMs in RIA-X mud was tested in field. The outcomes show that the designed LCMs are able to control severe lost circulation that regular processes such as cementing or drilling with foam cannot deal with

    Critical analysis of uncertainties during particle filtration

    Get PDF
    Extent: 9p. Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, 2012; 83(9):095106 and may be found at http://rsi.aip.org/resource/1/rsinak/v83/i9/p095106_s1.Using the law of propagation of uncertainties we show how equipment- and measurement-related uncertainties contribute to the overall combined standard uncertainties (CSU) in filter permeability and in modelling the results for polystyrene latex microspheres filtration through a borosilicate glass filter at various injection velocities. Standard uncertainties in dynamic viscosity and volumetric flowrate of microspheres suspension have the greatest influence on the overall CSU in filter permeability which excellently agrees with results obtained from Monte Carlo simulations. Two model parameters "maximum critical retention concentration" and "minimum injection velocity" and their uncertainties were calculated by fitting two quadratic mathematical models to the experimental data using a weighted least squares approximation. Uncertainty in the internal cake porosity has the highest impact on modelling uncertainties in critical retention concentration. The model with the internal cake porosity reproduces experimental "critical retention concentration vs velocity"-data better than the second model which contains the total electrostatic force whose value and uncertainty have not been reliably calculated due to the lack of experimental dielectric data.Alexander Badalyan, Themis Carageorgos, Pavel Bedrikovetsky, Zhenjiang You, Abbas Zeinijahromi, and Keyiseer Aj

    The Effects of Long-Duration Subduction Earthquakes on Inelastic Behavior of Bridge Pile Foundations Subjected to Liquefaction-Induced Lateral Spreading

    Get PDF
    Effective-stress nonlinear dynamic analyses (NDA) were performed for a large-diameter reinforced concrete (RC) pile in multi-layered liquefiable sloped ground. The objective was to assess the effects of earthquake duration on the combination of inertia and liquefaction-induced lateral spreading. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of motion durations. The NDA results showed that the pile head displacements increased under liquefied conditions, compared to nonliquefied conditions, due to liquefaction-induced lateral spreading. The NDA results were used to develop a displacement-based equivalent static analysis (ESA) method that combines inertial and lateral spreading loads for estimating elastic and inelastic pile demands
    corecore