28 research outputs found

    Riding in silence: a little snowboarding, a lot of small RNAs

    Get PDF
    The recent symposium, RNA silencing: Mechanism, Biology and Applications, organized by Phillip D. Zamore (University of Massachusetts Medical School) and Beverly Davidson (University of Iowa), and held in Keystone, Colorado, brought together scientists working on diverse aspects of RNA silencing, a field that comprises a multitude of gene regulatory pathways guided by microRNAs, small interfering RNAs and PIWI-interacting RNAs

    MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression

    Get PDF
    Recombinant adeno-associated viruses (rAAVs) that can cross the blood-brain-barrier and achieve efficient and stable transvascular gene transfer to the central nervous system (CNS) hold significant promise for treating CNS disorders. However, following intravascular delivery, these vectors also target liver, heart, skeletal muscle, and other tissues, which may cause untoward effects. To circumvent this, we used tissue-specific, endogenous microRNAs (miRNAs) to repress rAAV expression outside the CNS, by engineering perfectly complementary miRNA-binding sites into the rAAV9 genome. This approach allowed simultaneous multi-tissue regulation and CNS-directed stable transgene expression without detectably perturbing the endogenous miRNA pathway. Regulation of rAAV expression by miRNA was primarily via site-specific cleavage of the transgene mRNA, generating specific 5\u27 and 3\u27 mRNA fragments. Our findings promise to facilitate the development of miRNA-regulated rAAV for CNS-targeted gene delivery and other applications

    RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition

    Get PDF
    RNA chaperone activity is defined as the ability of proteins to either prevent RNA from misfolding or to open up misfolded RNA conformations. One-third of all large ribosomal subunit proteins from E. coli display this activity, with L1 exhibiting one of the highest activities. Here, we demonstrate via the use of in vitro trans- and cis-splicing assays that the RNA chaperone activity of L1 is conserved in all three domains of life. However, thermophilic archaeal L1 proteins do not display RNA chaperone activity under the experimental conditions tested here. Furthermore, L1 does not exhibit RNA chaperone activity when in complexes with its cognate rRNA or mRNA substrates. The evolutionary conservation of the RNA chaperone activity among L1 proteins suggests a functional requirement during ribosome assembly, at least in bacteria, mesophilic archaea and eukarya. Surprisingly, rather than facilitating catalysis, the thermophilic archaeal L1 protein from Methanococcus jannaschii (MjaL1) completely inhibits splicing of the group I thymidylate synthase intron from phage T4. Mutational analysis of MjaL1 excludes the possibility that the inhibitory effect is due to stronger RNA binding. To our knowledge, MjaL1 is the first example of a protein that inhibits group I intron splicing

    Cleavage of the siRNA passenger strand during RISC assembly in human cells

    No full text
    A crucial step in the RNA interference (RNAi) pathway involves the assembly of RISC, the RNA-induced silencing complex. RISC initially recognizes a double-stranded short interfering RNA (siRNA), but only one strand is finally retained in the functional ribonucleoprotein complex. The non-incorporated strand, or ‘passenger' strand, is removed during the assembly process and most probably degraded thereafter. In this report, we show that the passenger strand is cleaved during the course of RISC assembly following the same rules established for the siRNA-guided cleavage of a target RNA. Chemical modifications impairing the cleavage of the passenger strand also impair the cleavage of a target RNA in vitro as well as the silencing of a reporter gene in vivo, suggesting that passenger strand removal is facilitated by its cleavage during RISC assembly. Interestingly, target RNA cleavage can be rescued if an otherwise non-cleavable passenger strand shows a nick at the scissile phosphodiester bond, which further indicates that the cleavage event per se is not essential

    Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor

    Full text link
    Non-templated 3'-uridylation of RNAs has emerged as an important mechanism for regulating the processing, stability and biological function of eukaryotic transcripts. In Drosophila, oligouridine tailing by the terminal uridylyl transferase (TUTase) Tailor of numerous RNAs induces their degradation by the exonuclease Dis3L2, which serves functional roles in RNA surveillance and mirtron RNA biogenesis. Tailor preferentially uridylates RNAs terminating in guanosine or uridine nucleotides but the structural basis underpinning its RNA substrate selectivity is unknown. Here, we report crystal structures of Tailor bound to a donor substrate analog or mono- and oligouridylated RNA products. These structures reveal specific amino acid residues involved in donor and acceptor substrate recognition, and complementary biochemical assays confirm the critical role of an active site arginine in conferring selectivity toward 3'-guanosine terminated RNAs. Notably, conservation of these active site features suggests that other eukaryotic TUTases, including mammalian TUT4 and TUT7, might exhibit similar, hitherto unknown, substrate selectivity. Together, these studies provide critical insights into the specificity of 3'-uridylation in eukaryotic post-transcriptional gene regulation

    Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins

    Get PDF
    In flies, 22–23-nucleotide (nt) microRNA duplexes typically contain mismatches and begin with uridine, so they bind Argonaute1 (Ago1), whereas 21-nt siRNA duplexes are perfectly paired and begin with cytidine, promoting their loading into Ago2. A subset of Drosophila endogenous siRNAs—the hairpin-derived hp-esiRNAs—are born as mismatched duplexes that often begin with uridine. These would be predicted to load into Ago1, yet accumulate at steady-state bound to Ago2. In vitro, such hp-esiRNA duplexes assemble into Ago1. In vivo, they encounter complementary target mRNAs that trigger their tailing and trimming, causing Ago1-loaded hp-esiRNAs to be degraded. In contrast, Ago2-associated hp-esiRNAs are 2′-O-methyl modified at their 3′ ends, protecting them from tailing and trimming. Consequently, the steady-state distribution of esiRNAs reflects not only their initial sorting between Ago1 and Ago2 according to their duplex structure, length, and first nucleotide, but also the targeted destruction of the single-stranded small RNAs after their loading into an Argonaute protein

    The 3\u27-to-5\u27 exoribonuclease Nibbler shapes the 3\u27 ends of microRNAs bound to Drosophila Argonaute1

    No full text
    BACKGROUND: MicroRNAs (miRNAs) are ~22 nucleotide (nt) small RNAs that control development, physiology, and pathology in animals and plants. Production of miRNAs involves the sequential processing of primary hairpin-containing RNA polymerase II transcripts by the RNase III enzymes Drosha in the nucleus and Dicer in the cytoplasm. miRNA duplexes then assemble into Argonaute proteins to form the RNA-induced silencing complex (RISC). In mature RISC, a single-stranded miRNA directs the Argonaute protein to bind partially complementary sequences, typically in the 3\u27 untranslated regions of messenger RNAs, repressing their expression. RESULTS: Here, we show that after loading into Argonaute1 (Ago1), more than a quarter of all Drosophila miRNAs undergo 3\u27 end trimming by the 3\u27-to-5\u27 exoribonuclease Nibbler (CG9247). Depletion of Nibbler by RNA interference (RNAi) reveals that miRNAs are frequently produced by Dicer-1 as intermediates that are longer than ~22 nt. Trimming of miRNA 3\u27 ends occurs after removal of the miRNA* strand from pre-RISC and may be the final step in RISC assembly, ultimately enhancing target messenger RNA repression. In vivo, depletion of Nibbler by RNAi causes developmental defects. CONCLUSIONS: We provide a molecular explanation for the previously reported heterogeneity of miRNA 3\u27 ends and propose a model in which Nibbler converts miRNAs into isoforms that are compatible with the preferred length of Ago1-bound small RNAs
    corecore