472 research outputs found

    Horizontal geometry of trade wind cumuli - aircraft observations from a shortwave infrared imager versus a radar profiler

    Get PDF
    This study elaborates on how aircraft-based horizontal geometries of trade wind cumulus clouds differ whether a one-dimensional (1D) profiler or a two-dimensional (2D) imager is used. While nadir profiling devices are limited to a 1D realization of the cloud transect size, with limited representativeness of horizontal cloud extension, 2D imagers enhance our perspectives by mapping the horizontal cloud field. Both require high resolutions to detect the lower end of the cloud size spectrum. In this regard, the payload aboard the HALO (High Altitude and LOng Range Research Aircraft) achieves a comparison and also a synergy of both measurement systems. Using the NARVAL II (Next-Generation Aircraft Remote-Sensing for Validation Studies) campaign, we combine HALO observations from a 35.2 GHz cloud and precipitation radar (1D) and from the hyperspectral 2D imager specMACS (Munich Aerosol Cloud Scanner), with a 30 times higher along-track resolution, and compare their cloud masks. We examine cloud size distributions in terms of sensitivity to sample size, resolution and the considered field of view (2D or 1D). This specifies impacts on horizontal cloud sizes derived from the across-track perspective of the high-resolution imager in comparison to the radar curtain. We assess whether and how the trade wind field amplifies uncertainties in cloud geometry observations along 1D transects through directional cloud elongation. Our findings reveal that each additional dimension, no matter of the device, causes a significant increase in observed clouds. The across-track field yields the highest increase in the cloud sample. The radar encounters difficulties in characterizing the trade wind cumuli size distribution. More than 60 % of clouds are subgrid scale for the radar. The radar has issues in the representation of clouds shorter than 200 m, as they are either unresolved or are incorrectly displayed as single grid points. Very shallow clouds can also remain unresolved due to too low radar sensitivity. Both facts deteriorate the cloud size distribution significantly at this scale. Double power law characteristics in the imager-based cloud size distribution do not occur in radar observations. Along-track measurements do not necessarily cover the predominant cloud extent and inferred geometries' lack of representativeness. Trade wind cumuli show horizontal patterns similar to ellipses, with a mean aspect ratio of 3 : 2 and having tendencies of stronger elongation with increasing cloud size. Instead of circular cloud shape estimations based on the 1D transect, elliptic fits maintain the cloud area size distribution. Increasing wind speed tends to stretch clouds more and tilts them into the wind field, which makes transect measurements more representative along this axis

    Convective cold pools in long-term boundary layer mast observations

    Get PDF
    Cold pools are mesoscale features that are key for understanding the organization of convection, but are insufficiently captured in conventional observations. This study conducts a statistical characterization of cold-pool passages observed at a 280-m-high boundary layer mast in Hamburg (Germany) and discusses factors controlling their signal strength. During 14 summer seasons 489 cold-pool events are identified from rapid temperature drops below 22K associated with rainfall. The cold-pool activity exhibits distinct annual and diurnal cycles peaking in July and midafternoon, respectively. The median temperature perturbation is -3.3K at 2-m height and weakens above. Also the increase in hydrostatic air pressure and specific humidity is largest near the surface. Extrapolation of the vertically weakening pressure signal suggests a characteristic cold-pool depth of about 750 m. Disturbances in the horizontal and vertical wind speed components document a lifting-induced circulation of air masses prior to the approaching cold-pool front. According to a correlation analysis, the near-surface temperature perturbation is more strongly controlled by the pre-event saturation deficit (r = -0.71) than by the event-accumulated rainfall amount (r = -0.35). Simulating the observed temperature drops as idealized wet-bulb processes suggests that evaporative cooling alone explains 64 of the variability in cold-pool strength. This number increases to 92 for cases that are not affected by advection of midtropospheric low-Qe air masses under convective downdrafts. © 2021 American Meteorological Society

    The Hamburg Tornado (7 June 2016) from the perspective of low-cost high-resolution radar data and weather forecast model

    No full text
    A tornado hit the northeastern suburbs of Hamburg, Germany, on 7 June 2016. It had an estimated strength of upper end F1 on the Fujita scale and was short-lived with an approximate duration of only 13 min and a path length of just about 1.3 km. We demonstrate that such a small-scale, extreme event can be observed and forecasted accurately by a low-cost radar and by an atmospheric model with low computational costs, respectively. Observations from a low-cost single polarized X-band radar covering the urban area of Hamburg with 60 m spatial and 30 s temporal resolution are analyzed with respect to their ability to capture the development as well as the track of the tornado. In contrast to the national C-band radar network, the X-band radar is capable of capturing the hook echo of the tornado as well as the circular pattern in rain rates, because of its higher resolution in space and time. High-resolution forecasts of the tornado event are conducted with the computational efficient Conformal Cubic Atmosphere Model (CCAM) in order to test the capability of predicting the tornado with a lead time of a few hours. A three step downscaling method is used to obtain a spatial resolution of 1 km with initial conditions taken from the NCEP analysis. Calculated severe weather indices clearly indicate a potential for a tornado. CCAM cannot explicitly resolve small scale tornadic features but the model simulates a strong convective cell only a few kilometers apart from the tornadic thunderstorm observed by the radar

    Two adaptive radiative transfer schemes for numerical weather prediction models

    Get PDF
    Radiative transfer calculations in atmospheric models are computationally expensive, even if based on simplifications such as the δ-two-stream approximation. In most weather prediction models these parameterisation schemes are therefore called infrequently, accepting additional model error due to the persistence assumption between calls. This paper presents two so-called adaptive parameterisation schemes for radiative transfer in a limited area model: A perturbation scheme that exploits temporal correlations and a local-search scheme that mainly takes advantage of spatial correlations. Utilising these correlations and with similar computational resources, the schemes are able to predict the surface net radiative fluxes more accurately than a scheme based on the persistence assumption. An important property of these adaptive schemes is that their accuracy does not decrease much in case of strong reductions in the number of calls to the δ-two-stream scheme. It is hypothesised that the core idea can also be employed in parameterisation schemes for other processes and in other dynamical models

    Sub-mesoscale observations of convective cold pools with a dense station network in Hamburg, Germany

    Get PDF
    From June to August 2020, an observational network of 103 meteorological ground-based stations covered the greater area (50 km × 35 km) of Hamburg (Germany) as part of the Field Experiment on Sub-mesoscale Spatio-Temporal variability at Hanseatic city of Hamburg (FESST@HH). The purpose of the experiment was to shed light on the sub-mesoscale (O(100) m–O(10) km) structure of convective cold pools that typically remain under-resolved in operational networks. During the experiment, 82 custom-built, low-cost APOLLO (Autonomous cold POoL LOgger) stations sampled air temperature and pressure with fast-response sensors at 1 s resolution to adequately capture the strong and rapid perturbations associated with propagating cold pool fronts. A secondary network of 21 weather stations with commercial sensors provided additional information on relative humidity, wind speed, and precipitation at 10 s resolution. The realization of the experiment during the COVID-19 pandemic was facilitated by a large number of volunteers who provided measurement sites on their premises and supported station maintenance. This article introduces the novel type of autonomously operating instruments, their measurement characteristics, and the FESST@HH data set (https://doi.org/10.25592/UHHFDM.10172; Kirsch et al., 2021b). A case study demonstrates that the network is capable of mapping the horizontal structure of the temperature signal inside a cold pool, and quantifying a cold pool's size and propagation velocity throughout its life cycle. Beyond its primary purpose, the data set offers new insights into the spatial and temporal characteristics of the nocturnal urban heat island and variations of turbulent temperature fluctuations associated with different urban and natural environments

    Data and Services at the Integrated Climate Data Center (ICDC) at the University of Hamburg

    Get PDF
    KlimawandelEarth observation data obtained from remote sensing sensors and in-situ data archives are fundamental for our current understanding of the Earth’s climate system. Such data are an important pre-requisite for Earth System research and should be easy to access and easy to use. In addition such data should be quality assessed and attached with information about uncertainties and long-term stability. If these data sets are stored in a self-explanatory, easy-to-use format, their usefulness and scientific value increase. This is the guideline for the Integrated Climate Data Center (ICDC) at the Center for Earth System Research and Sustainability (CEN), University of Hamburg. ICDC offers a reliable, quick and easy data access along with expert support for users and data providers. The ICDC provides several types of worldwide accessible in situ and satellite Earth observation data of the atmosphere, ocean, land surface, and cryosphere via the web portal http://icdc.zmaw.de. Recently, data from socio-economic sciences have been integrated into ICDC’s data base to enhance interdisciplinary collaboration. On ICDC’s web portal, each data set has its own page. It contains the data access points, a short data description, information about spatiotemporal coverage and resolution, data quality, important reference documents and contacts, and about how to cite the data set. The data are converted into netCDF or ASCII format. Consistency and quality checks are carried out – often in the framework of international collaborations. Literature studies are conducted to learn about potential limitations or preferred application areas of the data offered. The data sets can be accessed through the web page via FTP, HTTP or OPeNDAP. Using the Live Access Server, users can visualize data as maps, along transects and profiles, zoom into key regions, and create time series. In both fields, visualization and data access, ICDC tries to provide fast response times and high reliability
    • …
    corecore