13 research outputs found

    5-Choosability of Planar-plus-two-edge Graphs

    Get PDF
    We prove that graphs that can be made planar by deleting two edges are 5-choosable. To arrive at this, first we prove an extension of a theorem of Thomassen. Second, we prove an extension of a theorem Postle and Thomas. The difference between our extensions and the theorems of Thomassen and of Postle and Thomas is that we allow the graph to contain an inner 4-list vertex. We also use a colouring technique from two papers by Dvořák, Lidický and Škrekovski, and independently by Compos and Havet

    Edge-disjoint Linkages in Infinite Graphs

    Get PDF
    The main subject of this thesis is the infinite graph version of the weak linkage conjecture by Thomassen [24]. We first prove results about the structure of the lifting graph; Theorems 2.2.8, 2.2.24, and 2.3.1. As an application, we improve the weak-linkage result of Ok, Richter, and Thomassen [18]. We show that an edge-connectivity of (k+1) is enough to have a weak k-linkage in infinite graphs in case k is odd, Theorem 3.3.6. Thus proving that Huck's theorem holds for infinite graphs. This is only one step far away from the conjecture, which has an edge-connectivity condition of only k in case k is odd. As another application, in Theorem 4.2.7 we improve a result of Thomassen about strongly connected orientations of infinite graphs [25], in the case when the infinite graph is 1-ended. This brings us closer to proving the orientation conjecture of Nash-Williams for infinite graphs [15]

    Henry Gas Solubility Optimization Double Machine Learning Classifier for Neurosurgical Patients

    Get PDF
    This study aims to predict head trauma outcome for Neurosurgical patients in children, adults, and elderly people. As Machine Learning (ML) algorithms are helpful in healthcare field, a comparative study of various ML techniques is developed. Several algorithms are utilized such as k-nearest neighbor, Random Forest (RF), C4.5, Artificial Neural Network, and Support Vector Machine (SVM). Their performance is assessed using anonymous patients\u27 data. Then, a proposed double classifier based on Henry Gas Solubility Optimization (HGSO) is developed with Aquila optimizer (AQO). It is implemented for feature selection to classify patients\u27 outcome status into four states. Those are mortality, morbidity, improved, or the same. The double classifiers are evaluated via various performance metrics including recall, precision, F-measure, accuracy, and sensitivity. Another contribution of this research is the original use of hybrid technique based on RF-SVM and HGSO to predict patient outcome status with high accuracy. It determines outcome status relationship with age and mode of trauma. The algorithm is tested on more than 1000 anonymous patients\u27 data taken from a Neurosurgical unit of Mansoura International Hospital, Egypt. Experimental results show that the proposed method has the highest accuracy of 99.2% (with population size = 30) compared with other classifiers

    Brain Tumor Segmentation Using Deep Capsule Network and Latent-Dynamic Conditional Random Fields

    No full text
    Because of the large variabilities in brain tumors, automating segmentation remains a difficult task. We propose an automated method to segment brain tumors by integrating the deep capsule network (CapsNet) and the latent-dynamic condition random field (LDCRF). The method consists of three main processes to segment the brain tumor—pre-processing, segmentation, and post-processing. In pre-processing, the N4ITK process involves correcting each MR image’s bias field before normalizing the intensity. After that, image patches are used to train CapsNet during the segmentation process. Then, with the CapsNet parameters determined, we employ image slices from an axial view to learn the LDCRF-CapsNet. Finally, we use a simple thresholding method to correct the labels of some pixels and remove small 3D-connected regions from the segmentation outcomes. On the BRATS 2015 and BRATS 2021 datasets, we trained and evaluated our method and discovered that it outperforms and can compete with state-of-the-art methods in comparable conditions

    Prediction of Chemical Toxicity for Drug Design Using AIRS Algorithms and Hybrid Classifiers

    No full text
    Studying toxicology and its relationship to drugs is expected to provide substantial human benefits; however, such benefits demand the ability to recognize and understand drug side effects and prevent them from happening. The proposed model aims to improve toxicity prediction by classifying chemical synthesis using an Artificial Immune Recognition System (AIRS) algorithm. The core of the current approach is its emphasis on constructing a hybrid classification system that achieves an effective performance. This system is achieved by merging three different types of artificial immune recognition system algorithms with a detector-based classifier in a hybrid model and optimizing the final output to improve the overall system performance

    Adapting the pre-trained convolutional neural networks to improve the anomaly detection and classification in mammographic images

    No full text
    Abstract Mortality from breast cancer (BC) is among the top causes of cancer death in women. BC can be effectively treated when diagnosed early, improving the likelihood that a patient will survive. BC masses and calcification clusters must be identified by mammography in order to prevent disease effects and commence therapy at an early stage. A mammography misinterpretation may result in an unnecessary biopsy of the false-positive results, lowering the patient’s odds of survival. This study intends to improve breast mass detection and identification in order to provide better therapy and reduce mortality risk. A new deep-learning (DL) model based on a combination of transfer-learning (TL) and long short-term memory (LSTM) is proposed in this study to adequately facilitate the automatic detection and diagnosis of the BC suspicious region using the 80–20 method. Since DL designs are modelled to be problem-specific, TL applies the knowledge gained during the solution of one problem to another relevant problem. In the presented model, the learning features from the pre-trained networks such as the squeezeNet and DenseNet are extracted and transferred with the features that have been extracted from the INbreast dataset. To measure the proposed model performance, we selected accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC) as our metrics of choice. The classification of mammographic data using the suggested model yielded overall accuracy, sensitivity, specificity, precision, and AUC values of 99.236%, 98.8%, 99.1%, 96%, and 0.998, respectively, demonstrating the model’s efficacy in detecting breast tumors

    EfficientNetB3-Adaptive Augmented Deep Learning (AADL) for Multi-Class Plant Disease Classification

    No full text
    Plant diseases can significantly impact agricultural productivity if not promptly identified and treated. Traditional plant disease classification methods are often challenging and time-consuming, making the identification of diseases a challenging task. This paper aims to bridge research gaps and address challenges in existing methodologies by proposing an efficient, effective multi-class plant disease classification approach. The research explores the application of pre-trained deep convolutional neural networks (CNNs) in this classification task, utilizing an open dataset comprising 52 categories of various diseases and healthy plant leaves. This study evaluated the performance of pre-trained deep CNN models, including Xception, InceptionResNetV2, InceptionV3, and ResNet50, paired with EfficientNetB3-adaptive augmented deep learning (AADL) for precise disease identification. Performance assessment was conducted using parameters such as batch size, dropout, and epoch counts, determining their accuracy, precision, recall, and F1 score. The EfficientNetB3-AADL model outperformed the other models and conventional feature-based methods, achieving a remarkable accuracy of 98.71%. This investigation highlights the potential of the EfficientNetB3-AADL model in offering accurate, real-time disease diagnostics in agricultural systems. The findings suggest that transfer learning and augmented deep learning techniques enhance the accuracy and performance of the model

    Performance Analysis for COVID-19 Diagnosis Using Custom and State-of-the-Art Deep Learning Models

    No full text
    The modern scientific world continuously endeavors to battle and devise solutions for newly arising pandemics. One such pandemic which has turned the world’s accustomed routine upside down is COVID-19: it has devastated the world economy and destroyed around 45 million lives, globally. Governments and scientists have been on the front line, striving towards the diagnosis and engineering of a vaccination for the said virus. COVID-19 can be diagnosed using artificial intelligence more accurately than traditional methods using chest X-rays. This research involves an evaluation of the performance of deep learning models for COVID-19 diagnosis using chest X-ray images from a dataset containing the largest number of COVID-19 images ever used in the literature, according to the best of the authors’ knowledge. The size of the utilized dataset is about 4.25 times the maximum COVID-19 chest X-ray image dataset used in the explored literature. Further, a CNN model was developed, named the Custom-Model in this study, for evaluation against, and comparison to, the state-of-the-art deep learning models. The intention was not to develop a new high-performing deep learning model, but rather to evaluate the performance of deep learning models on a larger COVID-19 chest X-ray image dataset. Moreover, Xception- and MobilNetV2- based models were also used for evaluation purposes. The criteria for evaluation were based on accuracy, precision, recall, F1 score, ROC curves, AUC, confusion matrix, and macro and weighted averages. Among the deployed models, Xception was the top performer in terms of precision and accuracy, while the MobileNetV2-based model could detect slightly more COVID-19 cases than Xception, and showed slightly fewer false negatives, while giving far more false positives than the other models. Also, the custom CNN model exceeds the MobileNetV2 model in terms of precision. The best accuracy, precision, recall, and F1 score out of these three models were 94.2%, 99%, 95%, and 97%, respectively, as shown by the Xception model. Finally, it was found that the overall accuracy in the current evaluation was curtailed by approximately 2% compared with the average accuracy of previous work on multi-class classification, while a very high precision value was observed, which is of high scientific value

    Fault Prediction Recommender Model for IoT Enabled Sensors Based Workplace

    No full text
    Industry 5.0 benefits from advancements being made in the field of machine learning and the Internet of Things. Different sensors have been installed in a variety of IoT devices present in different industries such as transportation, healthcare, manufacturing, agriculture, etc. The sensors present in these devices should automatically predict errors due to the extensive use of sensors in urban living. To ensure the integrity, precision, security, dependability and fidelity of sensor nodes, it is, therefore, necessary to foresee faults before they occur. Additionally, as more data is being collected by these devices every day, cloud computing becomes more necessary for sustainable urban living. The proposed model emphasizes solution recommendations for faults that occurred in real-life smart devices to mitigate faults at an early stage, which is a key requirement in today’s smart offices. The proposed model monitors the real-time health of IoT devices through an ML algorithm to make devices more efficient and increase the quality of life. Through the use of K-Nearest Neighbor, Decision Tree, Gaussian Naive Bayes and Random Forest approach, the proposed fault prediction recommender model has been evaluated and Random Forest shows the highest accuracy compared to other classifiers. Several performance indicators such as recall, accuracy, F1 score and precision were utilized to examine the performance of the model. The results have demonstrated the effectiveness of ML techniques applied to sensors in predicting faults in smart offices with Random Forest being observed as the best technique with a maximum accuracy of 94.27%. In future, deep learning can also be applied to bigger datasets to provide more accurate results
    corecore