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Abstract

We prove that graphs that can be made planar by deleting two edges are

5-choosable. To arrive at this, first we prove an extension of a theorem

of Thomassen. Second, we prove an extension of a theorem Postle and

Thomas. The difference between our extensions and the theorems of

Thomassen and of Postle and Thomas is that we allow the graph to

contain an inner 4-list vertex. We also use a colouring technique from

two papers by Dvořák, Lidický and Škrekovski, and independently by

Compos and Havet.
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Chapter 1

Introduction

In Graph Theory, one of the most fundamental theorems is the Four

Colour Theorem. Many colouring theorems and conjectures are either

extensions of or inspired by the Four Colour Theorem. One direction of

extension is colourability of graphs that are close to planar, another is

list-colourings of planar graphs.

A major generalization in the first direction is Albertson’s Conjecture,

which states that if a graph has chromatic number r, then its crossing

number is at least that of Kr. In case r = 5, this conjecture is equivalent

to the Four Colour Theorem. The conjecture is proved for r ≤ 16 (cf. [9],

[2] and [3]).

In the second direction we see Thomassen’s famous 5-choosability the-

orem for planar graphs [12] and Voigt’s examples of planar graphs that

are not 4-choosable [14].

The study of list-colourability of graphs that are not far from planar

is also a natural growing line of research. Compos and Havet [4], and

independently Dvořák, Lidický, and Škrekovski [5] proved that graphs

with two crossings are 5-choosable.

Here we prove in Theorem 2.1.1 that graphs that can be made planar

by deleting two edges, no matter how many crossings there are (there can

be arbitrarily many), are 5-choosable. This should give the maximum

number of edges that can be added to a planar graph without losing 5-

choosability, since for example K6 is a graph that can be made planar by
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deleting three edges but it has chromatic number 6.

As mentioned above, 5-choosability of planar graphs was proved by

Thomassen, that was in 1994. In 2011, Compos and Havet proved (in a

minor theorem, Theorem 3, in the paper [4] where they prove 5-choosability

of graphs with two crossings) that graphs that can be made planar by

deleting one edge are also 5-choosable.

The bigger ambition behind our work was to prove a list-colouring

analogue of Theorem 4.1 in [7], not the main theorem there, by Erman,

Havet, Lidický and Pangrác, 2011. In that theorem they prove that if

a graph can be made planar by deleting a set of at most 2k edges, then

it is (4 + k)-colourable. The proof of that colouring theorem is a simple

induction on k, but this seems not to go that simply with list-colouring.

In a plane graph G, the outer walk is the boundary of the infinite

face, and an inner vertex is a vertex not in the outer walk. If L is a

list-assignment of G, then for v ∈ V (G), L(v), or just v for short, is a

k-list if |L(v)| ≥ k. Our proof is in three stages.

(1) An extension of a theorem of Thomassen from 2007 [13]. We prove

that a plane graph with a precoloured path of length at most two

on the outer walk and an inner vertex with a list of size at least

four is colourable unless it contains a wheel-like structure attached

to the outer walk and the attachment vertices have few colours in

their lists. This is Theorem 4.3.1.

(2) An extension of a theorem of Postle and Thomas from 2015 [11].

This is concerned with colouring plane graphs with two 2-lists on

the outer walk and one inner 4-list that do not contain a wheel

attached to the outer walk with centre the 4-list. This is Theorem

2.1.3, proved in Section 4.4. In the proof of this theorem, the proofs

of Case 1 of Claim 4.4.11, and Case 2 of Claim 4.4.15, are proved

and written by Bruce Richter.

(3) We colour a part of a shortest path between the two edges carefully

so that after deleting its coloured vertices we obtain a graph with

a list assignment similar to that in (2). This is shown in Chapter
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3. This technique of colouring carefully a shortest path between

two bad configurations was done twice before in 2011 to prove that

graphs with two crossings are 5-choosable, by Dvořák, Lidický, and

Škrekovski [5], and independently by Compos and Havet [4].

In this work, we measure how far from planar the graph is by the

number of edges to delete to obtain a planar graph. There are other ways

to measure this. These include the crossing number, the distance between

crossings, and the number of vertices to delete to remove all the crossings.

Also whether the crossings are independent (that is the edges involved in

them do not have end-vertices in common) affects the chromatic number

and the choice number.

Dvořák, Lidický and Mohar proved that every graph drawn in the

plane so that the distance between every pair of crossings is at least 15

is 5-choosable [6]. In the same paper they also allowed some vertices to

have lists of size four only, as long as they are far apart and far from the

crossings.

Inspired by this, one possible way of extending our work is to answer

the following question.

Question 1.0.1. What is the choice number of a graph that can be made

planar by deleting edges {e1, · · · , ek} such that for every distinct i and j,

the distance between any crossing with ei and any crossing with ej is at

least d ?

In 2009 [9] Oporowski and Zhao asked whether graphs of crossing

number at most 5 and clique number at most 5 are 5-colourable. In

2011 [7], Erman, Havet, Lidický and Pangrác answered this question in

the negative (Theorem 1.3) but they showed that graphs with crossing

number at most 4 and clique number at most 5 are 5-colourable (Theorem

1.4).

They also showed in the same paper [7] that if a graph with clique

number at most 5 has three edges whose removal leaves the graph planar,

then it is 5-colourable (Theorem 1.6). Furthermore, they proved that if

a graph G has clique number at most 6 and there is a set of at most
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seven edges whose deletion from G results in a planar graph, then G is

6-colourable (Theorem 6.2). The last theorem in that paper, Theorem

6.12, states that if a triangle-free graph contains a set of at most four

edges whose deletion results in a planar graph, then it is 4-choosable.

Given this it is natural to ask the following question.

Question 1.0.2. If a graph does not contain K6 as a subgraph and can

be made planar by deleting three edges, is it 5-choosable ?

In the same paper [7], Erman, Havet, Lidický and Pangrác also proved

that if aK4-free graph has a drawing in the plane in which no two crossings

are dependent, then it is 4-colourable (Theorem 6.11). There has been

more research in the relationship between the independence of crossings

and chromatic number. In this respect Albertson conjectured that if a

graph can be drawn in the plane such that all its crossings are indepen-

dent, then its chromatic number is at most 5. He proved in 2008, [1],

that this is true for graphs of crossing number at most 3. Wenger [15]

extended Albertson’s result to graphs with four crossings. Later in 2010,

Král’ and Stacho proved the conjecture for any number of independent

crossings [8].

It is also natural to try to extend or prove analogues of those results

for list-colouring.
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Chapter 2

From 5-Choosability to Inner

4-Lists

2.1 The Problem

The goal of this thesis is to prove the following theorem.

Theorem 2.1.1. Let G be a graph. If there are edges e1 and e2 such that

G− {e1, e2} is planar, then G is 5-choosable.

In this chapter, we reduce the problem to that of list-colouring a plane

graph G′ containing either

(1) two inner 4-lists, each of which is the centre of a wheel attached to

the outer walk of G′ or

(2) two outer (that is on the outer walk) 2-lists and one inner 4-list that

is not the centre of a wheel attached to the outer walk of G′ (but

still may be the centre of a wheel).

In case G′ is as in (1), we colour it by Proposition 2.1.2 stated below,

and in case it is as in (2), we colour it by Theorem 2.1.3 stated below.

Notation: For a plane graph G, let ∂G denote the subgraph of G con-

sisting of those vertices and edges incident with the infinite face.
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Proposition 2.1.2. Let G be a plane graph and let x and y be two inner

vertices of G that are the centres of wheels W1 and W2, respectively, in G.

Suppose that, for i ∈ {1, 2}, V (∂Wi) ⊆ V (∂G). Let L be a list assignment

such that:

(a) for every v ∈ ∂G, |L(v)| ≥ 3;

(b) |L(x)| = |L(y)| = 4; and

(c) otherwise, |L(v)| ≥ 5.

Then G is L-colourable.

Theorem 2.1.3. Let G be a plane graph and let u and w be two vertices

in ∂G. Suppose that x is an inner vertex of G such that, if x is the centre

of a wheel W in G, then V (∂W ) 6⊆ V (∂G). Let L be a list assignment of

G such that:

(a) |L(x)| ≥ 4;

(b) |L(u)| ≥ 2 and |L(w)| ≥ 2;

(c) for every v ∈ V (∂G) \ {u,w}, |L(v)| ≥ 3; and

(d) otherwise, |L(v)| ≥ 5.

Then G is L-colourable.

Proposition 2.1.2 is proved in Section 4.2, and Theorem 2.1.3 is proved

in Section 4.4.

2.2 Reducing the problem to plane graphs

In this section, we explain how to find an appropriate plane subgraph G′

of G with list-assignment L′ for G′ satisfying either Proposition 2.1.2 or

Theorem 2.1.3. An L′-colouring of G′ will yield the desired colouring for

G.

We start with a minimum counterexample G to Theorem 2.1.1 and

choose two edges e1 and e2 of G so that G− {e1, e2} is planar and L is a
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Figure 2.1: v1 is in VF and is adjacent to one more vertex other than u1
in Q.

5-list-assignment of G for which G has no L-colouring. The main effort is

to find a suitable shortest path Q in G − {e1, e2} from a vertex incident

with e1 to a vertex incident with e2. We obtain G′ by deleting all or all

but one end of Q from G.

Definitions of G′, Q, u1, u2, v1, and v2:

For i = 1, 2, let ei = uivi. Fix an embedding of G − {e1, e2} in the

plane. Let Q be a shortest {u1, v1}{u2, v2}-path in G − {e1, e2}, and

set G′ = G − V (Q). Clearly Q is contained in one face F of G′. Let VF

denote the vertices of the boundary of F . See Figure 2.1. We may assume

without loss of generality that Q is a path between u1 and u2.

For a vertex v, let N(v) denote the set of neighbours of v in G. We

show the following.

Proposition 2.2.1. There is an L-colouring ϕ of Q such that for every

vertex v in VF , |L(v)\{ϕ(z) | z ∈ V (Q) ∩ N(v)}| ≥ 3. In particular, for

i = {1, 2}, if the end vi of ei that is not in Q is also not on the boundary

of F , then it has at least four available colours.

Note that if v1 (or v2) is not in VF , then its only neighbour in V (Q) is

u1 (or respectively u2), and so it has a list of size at least 4 after deleting

the colours of its neighbours in Q from its list.
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To prove that such a colouring of Q exists, first note that we may

assume that |V (Q)| ≥ 3 since otherwise every vertex in VF has at most

two neighbours in Q and so still has a list of size at least 3. More generally,

a vertex v in VF cannot have two neighbours at distance 3 or more in Q,

as otherwise there is a shorter path in G from u1 to u2. We summarize

this as follows.

Observation 2.2.2. Any vertex v in VF has at most three neighbours in

Q and the distance in Q between any two of its neighbours is at most 2.

In particular, if v has three neighbours in Q, then those three neighbours

are consecutive in Q.

Let Q = u1z1 · · · znu2, and rename u1 as z0 and u2 as zn+1. Then,

Observation 2.2.3. For every k ∈ {0, 1, · · · , n}, the only vertex in

{z0, · · · , zk} adjacent to zk+1 is zk.

We need the following two lemmas frequently in the thesis, Lemmas

2.2.5 and 2.2.6. They are about extending the colouring of a cycle of

length at most four to the interior of the cycle when the interior contains

one 4-list. Such a colouring is extendable unless the cycle has length four

and the 4-list is adjacent to all the vertices of the cycle.

The proof of those two lemmas needs Theorem 4.3.1. However, the

proof of Theorem 4.3.1 itself requires the proof of the claim that, for

minimum counterexamples, there are no triangles with nonempty interior

and no 4-cycles that contain vertices other than the 4-list in their interior.

The proof of that claim is literally the same as the proofs of the two

lemmas combined except for the reference to Theorem 4.3.1. In the proofs

of the lemmas we refer to the theorem generally while in the proof of

the claim we refer to the theorem as an induction hypothesis valid for

the interiors of the cycles, which are smaller subgraphs than a minimum

counterexample.

Thus, to avoid writing the same proof twice, and to avoid vicious

circles, we write the statements of the lemmas below with the premise

“ If Theorem 4.3.1 is true”. Actually we use a special case of Theorem
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4.3.1, which we state below as Proposition 2.2.4, and so you will find “ If

Proposition 2.2.4 is true” in the statements of Lemmas 2.2.5 and 2.2.6.

In this way we can refer to those lemmas in the proof of Theorem 4.3.1

as well as outside it.

Proposition 2.2.4. Let G be a plane graph, z a vertex in ∂G, and x a

vertex in G− V (∂G). Let L be a list assignment such that:

(a) L(z) is a singleton;

(b) for every v ∈ V (∂G) \ {z}, |L(v)| ≥ 3;

(c) |L(x)| ≥ 4; and

(d) otherwise, |L(v)| ≥ 5.

Then G has an L-colouring.

Lemma 2.2.5. Let H be a plane graph such that ∂H is a triangle and

let x be a vertex of H − V (∂H). Let ϕ be a colouring of ∂H and let L be

a list assignment on H such that:

(a) for every vertex v of ∂H, L(v) = {ϕ(v)};

(b) for every vertex v of H − (V (∂H) ∪ {x}), |L(v)| ≥ 5; and

(c) |L(x)| ≥ 4.

If Proposition 2.2.4 is true for H − V (∂H), then H has an L-colouring.

Proof. Let H be a minimum counterexample. We may assume that there

is no vertex in the interior of ∂H adjacent to all the vertices of ∂H.

If there is such a vertex, we can colour that vertex then by minimality

extend the colouring to the interiors of each one of the three triangles it

creates with its adjacencies.

Delete from the lists of the vertices in the interior of ∂H the colours

of their neighbours in ∂H. We colour the interior of ∂H with this new

list assignment as described below.
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Since every vertex in the interior of ∂H is adjacent to at most two

vertices in ∂H, every vertex in the outer walk of a block in H − V (∂H)

has at least three colours in its list, except for x, which may have a list

of size two. Thus, any such block is colourable either by Thomassen’s

Theorem 3.2.6 or by Proposition 2.2.4 as a start.

Now we describe how the colouring proceeds. Start by colouring a

block containing x by Proposition 2.2.4 or Theorem 3.2.6 of Thomassen,

depending on whether x is an inner vertex of the block or on its outer

walk. Then move to colour an uncoloured block containing an already

coloured vertex by Theorem 3.2.6 of Thomassen. This shows how to

colour a component containing x.

To colour a component not containing x, we can start by colouring any

block in the component and then move to an uncoloured block containing

an already coloured vertex.

Note that we should not move from a coloured block to one that has

no coloured vertices in the same component since then when we return to

colour an adjacent block to the first block, it has two coloured vertices.

Lemma 2.2.6. Let H be a plane graph such that ∂H is a 4-cycle and let

x be a vertex of H − V (∂H). Let ϕ be a colouring of ∂H and let L be a

list assignment on H such that:

(a) for every vertex v of ∂H, L(v) = {ϕ(v)};

(b) for every vertex v of H − (V (∂H) ∪ {x}), |L(v)| ≥ 5; and

(c) |L(x)| ≥ 4.

If Proposition 2.2.4 is true for H − V (∂H), and x is not adjacent to all

the vertices of ∂H, then H has an L-colouring.

Proof. If H − V (∂H) does not contain a block containing x as an inner

vertex that contains two vertices each adjacent to three vertices of C, we

colour H−V (∂H) as follows. Start by colouring a block containing x and

then move to an uncoloured block containing an already coloured vertex.
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In colouring the different blocks we use Theorem 3.2.6 of Thomassen,

Theorem 3.2.7 of Compos and Havet, or Proposition 2.2.4.

Now we show how to colour a block with two vertices each adjacent to

three vertices of C if it contains x as an inner vertex. This is the same as

colouring a plane graph with two 2-lists on the outer cycle, all the other

lists on the outer cycle are 4-lists, one inner 4-list, and all the other inner

lists are 5-lists.

There are two possibilities. If one of the 2-lists is not in any chord of

the block, we can colour it, delete it, then colour the smaller block, which

has only one vertex with less than three colours on its outer cycle (and

so is colourable by Proposition 2.2.4). If both 2-lists lie on chords of the

block, colour the vertex that has a 2-list on that chord (or one of them if

the chord has the two 2-lists as its end-vertices), delete it, then colour the

smaller blocks, moving from a block to an adjacent one, using Theorems

3.2.6, 3.2.7.

We also need the following lemma for the proof of Proposition 2.2.1.

Lemma 2.2.7. If T is a separating triangle in G − {e1, e2}, then each

of e1 and e2 has one end-vertex in the interior of T and the other in its

exterior.

Proof. Suppose for a contradiction that there is a separating triangle in

G − {e1, e2}, and note that a separating triangle in G − {e1, e2} may, in

G, have one of its edges crossed by either e1 or e2.

Let T be a separating triangle in G− {e1, e2}, and let G1 and G2 be

the subgraphs of G induced by V (T ) and the vertices in the exterior and

the interior of T . Choose the labeling so that G1 contains at least as

many of e1,e2 as G2 does. Furthermore, we may assume that, if either e1

or e2 is contained in either of G1 or G2, that e1 is contained in G1.

Recall that G is a minimum counterexample to Theorem 2.1.1. There-

fore, we can colour G1 by minimality. We have the following cases:

(a) e1 and e2 are both contained in G1.
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The subgraph G2−V (T ) is planar and there is at most one vertex in

it that is adjacent to all the three vertices of T . After deleting from

the list of every vertex v of G2−V (T ) the colours of the vertices in

N(v)∩ V (T ), Thomassen’s Theorem 3.2.6 shows G2− V (T ) has an

L-colouring extending that of G1 to all of G.

(b) e1 is contained in G1 but e2 is not contained in any of G1 or G2.

Since e2 is not contained in any of G1 or G2, it does not have an end-

vertex in T . Assume without loss of generality that the end-vertex

of e2 in V (G1)− V (T ) is u2 and the end-vertex in V (G2)− V (T ) is

v2. Delete from L(v2) the colour of u2. Then now we have a coloured

triangle with interior (or exterior) consisting of vertices that have

lists of size at least 5 except for one vertex that has a list of size

at least 4. The interior of such a triangle is colourable by Lemma

2.2.5.

(c) e1 is contained in G1 and e2 is contained in G2.

In this case there are at most two vertices of {u1, u2, v1, v2} in the

interior of T . Let z and w be two vertices of {u1, u2, v1, v2} in the

interior of T . Note that each of z and w still has a list of size at

least 4 after deleting the colour of its neighbour in the subgraph

induced by the two edges e1 and e2.

Since in this case there is symmetry between G1 and G2, we may

assume without loss of generality that G1 is the subgraph induced

by the vertices in the exterior of T and V (T ).

We may also assume that T does not contain any other separating

triangles. Therefore, if there is a vertex in the interior of T that is

adjacent to all the three vertices of T , then it is the only vertex in

the interior of T . In this case the interior of T is colourable as this

vertex has in its list a colour different from the colours of the three

vertices of V (T ) and the colour of its possible unique neighbour in

the exterior of T .

Therefore, we may assume that every vertex in the interior of T is
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adjacent to at most two vertices in V (T ). Delete from the lists of

the vertices in the interior of T the colours of their neighbours in

G1. Then every vertex in the interior of T , including z and w, has

a list of size at least three. This is true for z and w because they

have no neighbours in the exterior of T . If any of z and w has a

neighbour in the exterior of T , then one of the edges of T is e1 or e2,

but this returns us to part (a) where the two edges are contained in

G1.

Now we can extend the colouring to the interior of T by Theorem

3.2.6 of Thomassen.

We have shown that we can colour G in all the cases, and so we have a

contradiction.

2.2.1 Colouring vertices in Q

Here we prove Proposition 2.2.1.

Proof. Recall that Q = z0z1 · · · znzn+1, where z0 = u1 and zn+1 = u2.

Colour z0 by any colour ϕ(z0) in L(z0) and then colour z1 by any colour

ϕ(z1) in L(z1) \ {ϕ(z0)}. Suppose that, for some k ∈ {2, 3, · · · , n + 1},
ϕ(z0), ϕ(z1), · · · , ϕ(zk−1) are defined. For k < n + 1, let Rk = VF ∪
{zk+1, · · · , zn+1}, and let Rn+1 = VF . For a vertex v, let Bk(v) be the

list obtained from L(v) by deleting the colours of the neighbours of v

in {z0, z1, · · · , zk−1}. We show below by induction on k that we can

choose the colour ϕ(zk) ∈ Bk(zk) (=L(zk)\{ϕ(zk−1)}) in such a way that

|Bk+1(v)| ≥ 3 for every v ∈ Rk.

We have the following two cases.

Case 1. No vertex of Rk has three neighbours in {z0, · · · , zk}.

Then |Bk+1(v)| ≥ 3 for all v ∈ Rk regardless of how we define ϕ(zk). In

particular, if a vertex v ∈ Rk is adjacent to three vertices in {z0, · · · , zk−1}
or to at most two vertices in {z0, · · · , zk−1, zk}, then, regardless of how
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we define ϕ(zk), |Bk+1(v)| ≥ 3.

Case 2. There is a vertex y in Rk that has three neighbours in {z0, · · · , zk}.

If y is adjacent to three vertices in {z0, · · · , zk−1}, then Observation

2.2.2 shows that those are all the vertices it is adjacent to in {z0, · · · , zk−1, zk}.
Then, Bk+1(y) = Bk(y) and this has at least three colours by the induc-

tion hypothesis.

Therefore we may assume that y is adjacent to zk. Again by Obser-

vation 2.2.2, this means that the neighbours of y in Q are zk−2, zk−1 and

zk. By planarity of G − {e1, e2}, and since no end vertex of e1 or e2 is

adjacent to three vertices in Q, there is at most one other vertex w such

that w is adjacent to zk−2, zk−1 and zk. We show we can have one of the

following:

(1) a recolouring of zk−1 and a colour for zk such that every vertex still

has at least three colours, or

(2) a rerouting of Q so that there is at most one vertex adjacent to

zk−2, zk−1, and zk.

For (1): We go back to the step where we were to colour zk−1. Each of

y and w is adjacent to only zk−2, zk−1 and zk in Q, therefore, the only

coloured neighbour of y and w at this step is zk−2. Thus, each of y and

w still has four available colours.

If L(y) \ {ϕ(zk−2)} = L(zk−1) \ {ϕ(zk−2)} = L(w) \ {ϕ(zk−2)} = S,

then colour zk by a colour from L(zk) \ S. With this colouring, each of

y, zk−1 and w still has four available colours. Thus, regardless of how we

colour zk−1, each of y and w will have three available colours.

If L(zk−1) \ {ϕ(zk−2)} 6= L(y) \ {ϕ(zk−2)} or L(zk−1) \ {ϕ(zk−2)} 6=
L(v)\{ϕ(zk−2)}, then there is a colour c in L(zk−1)\{ϕ(zk−2)} such that

either |L(y) \ {ϕ(zk−2), c}| ≥ 4 or |L(v) \ {ϕ(zk−2), c}| ≥ 4.

Suppose without loss of generality that |L(y)\{ϕ(zk−2), c}| ≥ 4. Then

colour zk−1 with c. If |L(v) \ {ϕ(zk−2), c}| = 3, then there is a colour d in

L(zk) \ (L(v) \ {ϕ(zk−2), c}). Colour zk with d.
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zk−2
zk−1 zk

y

w

Figure 2.2: The vertices wm = w and y are adjacent. The dashed lines
are parts of Q, and the thick edges are e1 and e2.

Now we need to show that every vertex still has a list of size at least

three after this recolouring of zk−1. We have already shown this for y

and w, and clearly this holds for any vertex adjacent to at most two

vertices in z0, · · · , zk−1, zk, and for any vertex adjacent to three vertices

in z0, · · · , zk−2. The only possible obstruction for this is a vertex adjacent

to zk−3, zk−2, zk−1.

For (2): Consider the longest sequence w1 · · ·wm of vertices such that:

(i) w1 = w;

(ii) for i ∈ {1, · · · ,m}, wi 6= y; and

(iii) for every i, wi is adjacent to zk−2, wi−1 and zk,

If vm is not adjacent to y, then replace zk−2zk−1zk by zk−2wmzk in Q.

Now that there is only one vertex adjacent to the three vertices in this

part of (the new) Q, namely vm−1 is adjacent to zk−2, vm, and zk, we can

choose the colour of zk to be the unique colour in L(zk) \L(wm−1) Recall

that after colouring vm (the new zk−1), |L(zk)| = 4 while |L(wm−1)| = 3.

Thus vm and y are adjacent, then there is no clear way for rerouting

Q that will make (2) satisfied. See Figure 2.2. However, we can reroute

Q such that (1) is satisfied.
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Note that the subgraph induced by y, zk−2, zk−1, zk, w, w1, · · ·wm is a

plane graph with every face bounded by a triangle. By Lemma 2.2.7, the

end-vertices of e1 and e2 are in exactly two of those triangles, T1 and T2.

Since there are no separating 4-cycles that have all the end-vertices of e1

and e2 on one side, T1 and T2 intersect in at most one vertex. Also for

the same reason m is at most 3, and if T1 and T2 are disjoint, then they

are distance one apart.

There are a few cases for which triangles are T1 and T2, with the three

possible values for m. In each of those cases it is not hard to show there

is a rerouting of Q such that: if there is a vertex adjacent to zk−3, zk−2,

and zk−1 (the new one), then either there is a crossing avoiding e1 and e2,

or there is a shorter path than Q. Then, since G− {e1, e2} is embedded

in the plane, there is no vertex adjacent to zk−3, zk−2, and zk−1. This was

the only problematic situation for (1).

For example, in Figure 2.2, if we replace zk−2zk−1zk by zk−2wzk in Q,

then by planarity, the only vertex that can be adjacent to all of zk−3,

zk−2, and w is zk−1. This gives a shorter path than Q as we can replace

zk−3zk−2zk−1 by zk−3zk−1.

2.2.2 Colouring G′

To know whether we can colour G′, defined in Page 7, after colouring Q

as described above and deleting the colours of V (Q) from the lists of their

neighbours, we need to know the answer to the following question.

Question 2.2.8. Let H be a plane graph and let x and y be two distinct

vertices in V (H) \ V (∂H). Let L be a list assignment such that:

(a) |L(x)| = |L(y)| = 4;

(b) for every vertex v ∈ ∂H, |L(v)| ≥ 3; and

(c) otherwise, |L(v)| ≥ 5.

Does H have an L-colouring ?
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We do not know the answer to this question. However, in Section 4.1,

we prove Proposition 2.1.2, which states that it is true in the special case

that each of x and y is the centre of a wheel attached to the outer walk

of H.

So we may suppose that in G′ at least one of v1 and v2 is not the

centre of a wheel whose outer cycle is attached to the boundary of F . We

may assume without loss of generality that v1 satisfies this. This includes

also the case when v1 is in VF .

In this case, with a slight modification described below to the colouring

of Q described above, we come to a list assignment L′ of G′ such that,

for some two vertices w1 and w2 in VF :

(a) if v1 /∈ VF , then |L′(v1)| ≥ 4;

(b) for every v ∈ VF \ {w1, w2}, |L′(v)| ≥ 3; and

(c) |L′(w1)| ≥ 2 and |L′(w2)| ≥ 2,

Theorem 2.1.3 states that G′ is L′-colourable, and is proved in Section

4.4.

Let us for the moment call the situation when, in a plane graph, the

vertices on its outer boundary have 3-lists and the other vertices have

5-lists, the primary situation. A plane graph in the primary situation is

known to be colourable by Thomassen’s Theorem 3.2.6.

Note that in the list assignment of Question 2.2.8, the total number

of colours lost from the primary situation is 2, one lost at x and one lost

at y. In the list assignment L′ (above), the total number of colours lost

is 3 (in case v1 /∈ VF ). However, the question of L′-colourability of G′ is

less difficult than that since we added the condition that the unique 4-list

vertex (if exists) is not contained in a certain structure (not the centre of

a wheel attached to the boundary of F ).

The conclusion of this short comparison between those two list colour-

ing problems, Question 2.2.8 and Theorem 2.1.3, is that those two prob-

lems almost have the same rank of difficulty. One reason why we found

the latter easier is that there is a ready proof to try to make an adaptation
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of, that is the proof of Theorem 3.2.8 of Postle and Thomas for which

Theorem 2.1.3 is an extension.

Now we show how to come to the list assignment L′ of G′ with the

properties mentioned above.

Colour Q as described above, and then uncolour u2. Now u2 has four

available colours, since by Observation 2.2.3, the only neighbour of u2 in

Q is zn. Also v2 still has five colours if it is not in VF .

Note also that at most two of the neighbours of u2 on the boundary of

F have neighbours in Q other than u2 (because G−{e1, e2} is embedded

in the plane).

This means that for all neighbours y of u2 on the boundary of F ,

except possibly two, |Bn+1(y)| ≥ 5. If v ∈ VF is adjacent to u2 and other

vertices in Q, we know from the construction in the proof of Proposition

2.2.1 that |Bn+1(v)| ≥ 3.

Let w1 and w2 be two vertices in VF such that |Bn+1(w1)| ≥ 3 and

|Bn+1(w2)| ≥ 3. For every i ∈ {1, 2}, let ai be a colour in Bn+1(u2) \
Bn+1(wi) if |Bn+1(wi)| = 3, and let it be any colour in Bn+1(u2) otherwise.

If a1 6= a2, let S = {a1, a2}, and if a1 = a2, let b be any colour different

from a1 in Bn+1(u2), and let S = {a1, b}. In any case, for every i ∈ {1, 2},
either |Bn+1(wi)| ≥ 4 or there is at most one colour in S ∩Bn+1(wi).

Therefore, if we delete the colours in S from the lists of the neighbours

of u2 different from v2, we have at most two 2-lists on the boundary of F .

All the other vertices on the boundary of F have 3-lists and L(v2) is still

a 5-list.

Now since v1 is not the centre of a wheel whose outer cycle is attached

to the boundary of F , there is a colouring ϕ of G′ by Theorem 2.1.3 if it

is true. Then colour u2 with a colour in S \ {ϕ(v2)}.
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Chapter 3

Preliminaries

3.1 Introduction

Our extension Theorem 4.3.1 of Thomassen’s Theorem 3.2.4 asserts that

as long as there is no exceptional configuration, G has an L-colouring.

Although our result has more exceptions, Thomassen already had to deal

with some. Fortunately, ours are also ‘wheel-like’ structures that attach

to the outer boundary.

The purpose of this chapter is to thoroughly analyze the exceptional

configurations that occur in Theorem 4.3.1.

We begin by recalling the main results of Thomassen, Compos and

Havet, and Postle and Thomas. Then we introduce Thomassen’s excep-

tions, the ‘generalized wheels’. We will need a complete understanding of

the list assignments L of these exceptions that do not yield L-colourings.

The most basic and important example is a ‘broken wheel’, which is fully

analysed in Section 3.2.

In Section 3.3, we discuss material from Postle [10] that gives us as a

direct consequence the ability to extend a single pre-coloured vertex on

the outer walk of a plane graph to a complete colouring of the graph.

Here it is important to show that we can do so to avoid a particular

colouring of some other path of length one that is also on the outer walk.

The avoided colouring is one that does not extend to a colouring of some

generalized wheel in the original graph. This combines with the analysis
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v1
v2 vk v1

v2 vk

v1v2 vk

Figure 3.1: generalized wheels with principal path v2v1vk.

of the generalized wheels to show that there is always an extension to the

whole graph.

3.2 Wheel-Like Structures

In this section we introduce a number of wheel-like structures that appear

as exceptions to colouring. We recall several previous results concerning

list colourings of plane graphs, culminating in our Lemma 3.2.11. This

result completely determines the list assignments L of a broken wheel W

for which there is no L-colouring of W .

Thomassen [13] provided the first example of a theorem of the form

‘either there is an L-colouring or there is an exception’. This is the model

for our Theorem 4.3.1 and is used repeatedly in our proofs. We state his

theorem below after the following relevant definitions.

Definition 3.2.1. [13] (Broken Wheel) A broken wheel is a graph that

consists of a cycle C = v1v2 · · · vkv1 and, for all i = 3, 4, · · · , k − 1, the

edge v1vi. The vertex v1 is called the major vertex and the path v2v1vk

is called the principal path of the wheel.

See Figures 3.3, 3.4, and 3.5 for examples of broken wheels.

Definition 3.2.2. The broken wheel is even or odd if the length of its

outer walk is even or odd, respectively.
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Definition 3.2.3. [13] (Generalized Wheel) A graph G is a generalized

wheel with principal path uvw if G is either a wheel, a broken wheel, or

the union of two generalized wheels G1 and G2 with principal paths uvz

and zvw, respectively, such that G1 ∩G2 is just the path vz.

See Figure 3.1 for examples of generalized wheels.

Theorem 3.2.4. (Thomassen [13]) Let G be a plane graph such that ∂G

is a cycle v1v2 · · · vkv1. Let ϕ be a colouring of P := v2v1vk, and let L be

a list assignment such that:

(a) for i ∈ {1, 2, k}, L(vi) = {ϕ(vi)};

(b) for i ∈ {3, 4, · · · , k − 1}, |L(vi)| ≥ 3; and

(c) otherwise, |L(v)| ≥ 5.

Then either G has an L-coloring or G contains a subgraph G′ such that:

(1) G′ is a generalized wheel with principal path P ;

(2) V (∂G′) ⊆ V (∂G); and

(3) for all v ∈ V (∂G′) \ V (P ), L(v) is of size exactly 3.

From generalized wheels we define another wheel-like structure that

we call a wheel of wheels. The notion of double bellows introduced in [10,

P. 51] includes some, but not all, of our wheels of wheels.

Definition 3.2.5. (Wheel of Wheels) A graph G is a wheel of wheels if

it is obtained from two generalized wheels by identifying their principal

paths. The special case when one of the two generalized wheels is a broken

wheel and the other one is a wheel is called a double-centred wheel.

See Figures 3.2, 4.3, and 4.6 for examples of wheels of wheels.

In his breakthrough 1994 paper [12] proving 5-choosability of planar

graphs, Thomassen introduced what is now the standard approach to

proving other 5-list-colouring theorems for planar graphs. He proved it

by proving the following stronger theorem.
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Figure 3.2: A wheel of wheels with centre y and three sections, a broken
wheel and two wheels with centres w and z

Theorem 3.2.6. (Thomassen [12]). Let G be a plane graph and P = v1v2

a path of length one contained in ∂G. Let L be a list assignment for G

such that:

(a) for all v ∈ V (G) \ V (∂G), |L(v)| ≥ 5;

(b) for all v ∈ V (∂G) \ V (P ), |L(v)| ≥ 3; and

(c) L(v1) and L(v2) are unequal singletons.

Then G is L-colourable.

In 2011, Compos and Havet [4] proved a variation of Thomassen’s

result in which the vertices with singleton lists are not adjacent.

Theorem 3.2.7. (Compos and Havet [4]) Suppose G is a plane graph and

x, y and z are three distinct vertices in ∂G. Let L be a list assignment

such that:

(a) for all v ∈ V (G) \ V (∂G), |L(v)| ≥ 5;

(b) for all v ∈ V (∂G) \ {x, y, z}, |L(v)| ≥ 4;

(c) L(x) 6= L(y), |L(z)| ≥ 3; and

(d) L(x) and L(y) are singletons that are unequal in case x and y are

adjacent.
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Then G is L-colourable.

In 2015, Postle and Thomas published the following theorem which

solves the situation when there are two lists of size 2. This theorem

implies Theorem 3.2.6 of Thomassen. It is also one of our main tools. We

introduced an extension of this theorem, Theorem 2.1.3, that we need for

the proof of the main theorem of this thesis.

Theorem 3.2.8. (Postle and Thomas [11]) Let G be a plane graph, and

let v1 and v2 be distinct vertices in ∂G. Let L be a list assignment for G

such that:

(a) for all v ∈ V (G) \ V (∂G), |L(v)| ≥ 5;

(b) for all v ∈ V (∂G) \ {v1, v2}, |L(v)| ≥ 3; and

(c) |L(v1)| = |L(v2)| = 2.

Then G is L-colourable.

We will prove in Lemma 4.2.1 an analogue of the following lemma of

Thomassen [13]. In our case we need one inner 4-list and non-extendable

colourings of a path of length one.

Definition 3.2.9. Let H be a subgraph of a graph G, L a list assignment

ofG, and ϕ an L-colouring ofH. The colouring ϕ is good if it is extendable

to an L-colouring of G and bad otherwise.

The following lemma is a rephrasing of [13, Lemma 1].

Lemma 3.2.10. Assume G is a generalized wheel that is not a broken

wheel, with outer cycle C : v1v2 · · · vkv1. Let L be a list assignment of G

such that:

(a) for all v ∈ V (G) \ V (C), |L(v)| ≥ 5; and

(b) for all v ∈ V (C), |L(v)| ≥ 3.

Then there is at most one coloring of the path vkv1v2 that cannot be ex-

tended to an L-coloring of G.
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v1

v2

v3

v4

v5

v6

L(v1) = {1},
L(v2) = {3},

L(v3) = {1, 2, 3},
L(v4) = {1, 2, 3},

L(v5) = {1, 2, 3} and
L(v6) = {2}.

Figure 3.3: All
colourings of the
principal path that
are permutations of
{1, 2, 3} are unex-
tendable while all
the colourings 1, 2, 1,
1, 3, 1, 2, 1, 2, 2, 3, 2,
3, 1, 3 and 3, 2, 3 are
extendable. Note
that the outer cycle is
even.

v1

v2

v6

v5v4

v3

v7

L(v1) = {1},
L(v2) = {3},

L(v3) = {1, 2, 3},
L(v4) = {1, 2, 3},
L(v5) = {1, 2, 3},

L(v6) = {1, 2, 3} and
L(v7) = {2}.

Figure 3.4: All the
colourings 1, 2, 1,
1, 3, 1, 2, 1, 2, 2, 3, 2,
3, 1, 3 and 3, 2, 3,
of the principal
path, are unextend-
able while all the
colourings that are
permutations of
{1, 2, 3} are extend-
able. Note that the
outer cycle is odd.

Lemma 3.2.10 is about generalized wheels that are not broken wheels.

Here we prove the following lemma about the unextendable colourings of

the principal path of a broken wheel.

When we say that abc is a colouring of the path u1u2u3 or that the

path u1u2u3 is coloured abc we mean that u1, u2, and u3 are given the

colours a, b, and c, respectively. Now, when a, b, and c are different, we

can regard the colouring abc as a permutation of {a, b, c}.

Lemma 3.2.11. Let W be a broken wheel with outer cycle v1v2 · · · vkv1
and principal path P := v2v1vk, and let L be a list assignment of W such
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v1

v2

v4v3

v5

L(v1) = {2},
L(v2) = {1},

L(v3) = {1, 2, 4},
L(v4) = {2, 3, 4} and

L(v5) = {3}.

v1

v2

v4v3

v5

L(v1) = {4},
L(v2) = {1},

L(v3) = {1, 2, 4},
L(v4) = {2, 3, 4} and

L(v5) = {3}.

Figure 3.5: The only difference between the two list assignments is the
colour of the middle vertex of the principal path. Both colourings of the
principal path are unextendable.

that, for every i /∈ {1, 2, k}, L(vi) ≥ 3. If there is more than one bad

colouring for P , then all the bad colourings are from one of the following

five cases.

(1) They are all the permutations of a fixed 3-set S. In this case, W is

even, all the lists are equal to S, and all the colourings of P of the

form aba with a and b having values in S are good.

(2) They are all the colourings of P of the form aba taken from a fixed

3-set S. In this case, W is odd, all the lists are equal to S, and all

the colourings of P that are permutations of S are good.

(3) They are two colourings cae and cbe that agree on v2 and vk but

give v1 different colours.

(4) They are two colourings abe and bae that give vk the same colour

and alternate the colours of v2 and v1, or they are two colourings

cab and cba that give v2 the same colour and alternate the colours

of v1 and vk.

(5) They are two colourings aba and bab.
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Proof. We start with a helpful claim.

Claim 3.2.12. If there is a bad colouring for P , then all the lists of

v3, · · · , vk−1 are of size exactly three and every colour of v1 involved in a

bad colouring of P is contained in all those lists. Consequently, at most

three colours of v1 are involved in bad colourings of P . Moreover, if ϕ

and ϕ′ are distinct bad colourings of P such that ϕ(v1) = ϕ′(v1), then

ϕ(v2) 6= ϕ′(v2) and ϕ(vk) 6= ϕ′(vk).

Proof. Let ϕ be a bad colouring of P and suppose that P is coloured

with ϕ. Colour the vertices from v3 in ascending order of indices. If some

vertex vi has two colours in its list that are both different from the colours

of its coloured neighbours we can stop colouring at this point then start

colouring from vk−1 in descending order of indices. Then vi is colourable.

Therefore when P is coloured with ϕ, in colouring from v3 in ascending

order of indices, each vertex vi is forced to be coloured by the unique

colour in its list different from the colours of v1 and vi−1. Similarly, in

colouring from vk−1 in descending order of indices, each vertex vi is forced

to be coloured by the unique colour in its list different from the colours

of v1 and vi+1.

Thus, if there is a bad colouring for P , then all the lists of v3, · · · , vk−1
are of size exactly three, and every colour of v1 involved in a bad colouring

of P is contained in all those lists. Therefore, at most three colours of v1

are involved in bad colourings of P .

Suppose ϕ1 and ϕ2 are colourings of P that agree on v1, vk, but differ

on v2. Starting with vk−1, all the vertices will have their colours forced in

both colourings. Thus, at most one of ϕ1 and ϕ2 can be bad.

Similarly, if two colourings of P agree on the colours of v1, v2 but differ

on vk, then at most one of them is bad.

Now, we have the following cases.

Case 1: There are three colours of v1 involved in bad colourings.

Let a, b, c be the three colours. Then all the vertices v3, · · · , vk−1 have

the same list S := {a, b, c}. Any colouring that gives v2 a colour not in S
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is good since we can colour the vertices from vk−1 in descending order of

indices and then v3 is colourable since the colour of one of its neighbours,

namely v2, is not in L(v3). Similarly any colouring that gives vk a colour

not in S is good. Therefore, all the bad colourings give v2, v1 and vk

colours from S.

Now consider any colouring of P with colours from S. We may sup-

pose without loss of generality that v1 is coloured a and v2 is coloured b.

If we colour the vertices from v3 in ascending order of indices, the vertices

with an odd index are coloured c and the vertices with an even index are

coloured b. Therefore, if W is even, then the colouring bab is good and the

colouring bac is bad; this is (1). However, if W is odd, then the colouring

bab of P is bad and the colouring bac is good; this is (2).

Case 2: P has more than one bad colouring and at most two colours

of v1 are involved in bad colourings of P .

Let ϕ and ϕ′ be two bad colourings of P . We show that ϕ(v1) 6= ϕ′(v1).

Suppose for a contradiction that ϕ(v1) = ϕ′(v1). Then by Claim 3.2.12,

ϕ(v2) 6= ϕ′(v2) and ϕ(vk) 6= ϕ′(vk). Suppose that ϕ and ϕ′ are b1ac1

and b2ac2 respectively. Since both b1ac1 and b2ac2 are bad colourings,

L(v3) = {a, b1, b2} and L(vk−1) = {a, c1, c2}.
By considering colouring from v3 in ascending order of indices in both

cases, when P is coloured b1ac1 and b2ac2, we find, since both colourings

are bad and the colour of each vi is forced by the colour of vi−1, that all

the lists are equal to {a, b1, b2}. Therefore, {b1, b2} = {c1, c2} = {c, b} for

some b and c, ϕ and ϕ′ have values in the 3-set S := {a, b, c} and all the

lists are equal to S.

Now it is not hard to see that, depending on the parity of W , either

all the permutations of S are bad colourings of P or all the colourings

of the form θλθ taken from S are bad colourings of P . In either case

this means that there are 3 colours of v1 involved in bad colourings of P .

This contradicts our assumption that there are at most two colours of v1

involved in bad colourings of P .

We conclude there are exactly two bad colourings ϕ and ϕ′ of P and
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that ϕ(v1) 6= ϕ′(v2).

Let a and b be the two colours of v1 involved in bad colourings of

P and suppose that c1ae1 and c2be2 are the two bad colourings. Since

L(v3) contains both a and c1 as well as b and c2, L(v3) = {a, b, c} for

some c /∈ {a, b}, (c2 = c or c2 = a) and (c1 = b or c1 = c). Similarly,

L(vk−1) = {a, b, e} for some e /∈ {a, b}, (e1 = b or e1 = e) and (e2 = a or

e2 = e). Note that c and e may be equal.

Thus the different possibilities of the two bad colourings can be viewed

as the elements of {cae, bae, cab, bab}×{cbe, cba, abe, aba} (that is, the two

bad colourings may be one of the 16 pairs in this Cartesian product). The

ones that belong to one of the cases in the statement of the theorem are

(cae, cbe), (bae, abe), (cab, cba), and (bab, aba). Those are respectively

cases (3), (4), (4), and (5) in the statement of the Lemma.

We can partition the remaining possibilities of the two bad colourings

into groups as follows (in all four cases {θ, λ} = {a, b}):

(i) either v2 or vk has the same colour in both colourings, that is,

{(cae, cba), (cae, abe), (bae, cbe), (cab, cbe)};

(ii) one of the two colourings is of the form θλθ and the other is either

cθλ or λθe, that is, {(bae, aba), (cab, aba), (bab, abe), (bab, cba)};

(iii) one of the two colourings is of the form θλθ and the other is cθe,

that is, {(cae, aba), (bab, cbe)};

(iv) one of the two colourings is of the form cθλ and the other is θλe,

that is, {(bae, cba), (cab, abe)}.

We can take (cae, cba), (bab, abe), (cae, aba) and (bae, cba) to be repre-

sentatives of each of these four groups, respectively.

Note that all the lists of the vertices v3, · · · , vk−1 contain both a and

b. Then, in case P is given a bad colouring that gives v2 a colour outside

{a, b}, in colouring from v3 in ascending order of indices, the vertices vi

with i odd are forced to be coloured from {a, b} while the vertices vi with

i even are forced to be coloured from outside {a, b}.
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Similarly, in colouring from vk−1 in descending order of indices, the

vertices vi with i of a parity different from that of k are forced to be

coloured from {a, b} while the vertices vi with i of the same parity as k

are forced to be coloured from outside {a, b}.
In case P is given a bad colouring that gives v2 a colour in {a, b}, in

colouring from v3 in ascending order of indices, the vertices vi with i odd

are forced to be coloured from outside {a, b} while the vertices vi with i

even are forced to be coloured from {a, b}.
Similarly, in colouring from vk−1 in descending order of indices, the

vertices vi with i of a parity different from that of k are forced to be

coloured from outside {a, b} while the vertices vi with i of the same parity

as k are forced to be coloured from {a, b}.
Now note that there are two consecutive non-equal lists L(vr) 6=

L(vr+1) (since otherwise all the lists are equal and there are three colours

of v1 involved in bad colourings). Then L(vr) = {a, b, fr} and L(vr+1) =

{a, b, fr+1} where fr 6= fr+1. For each group, there are four cases, de-

pending on the parities of k and r. This requires a total of sixteen easy

checks that at most one of the two colourings is bad, left to the reader.

3.3 Avoiding a Colouring

The main result in this section is Corollary 3.3.9. This result shows

we may precolour a vertex and forbid a particular colouring of a path

of length one, both in the outer walk, and still have an extension to a

colouring of the plane graph. This corollary is a simple consequence of

Theorem 3.3.7, below, proved by Postle [10].

Most of this section consists of providing the definitions from [10]

that are needed to state Theorem 3.3.7. The concepts introduced here

are used later in the thesis, in particular to state Theorem 4.3.1, which is

our extension of Thomassen’s Theorem 3.2.4 to allow an inner 4-list.

Definition 3.3.1. (Canvas [10]) A triple (G,S, L) is a canvas if G is a

plane graph, S is a subgraph of ∂G, and L is a list assignment of the
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vertices of G such that:

(a) for all v ∈ V (G) \ V (∂G), |L(v)| ≥ 5;

(b) for all v ∈ V (∂G) \ V (S), |L(v)| ≥ 3; and

(c) there exists a proper L-colouring of S.

In this definition, it is possible that two vertices of S are adjacent

in G, but not in S. Thus, even if S has a proper L-colouring, it need

not be the case that the subgraph of G induced by V (S) has a proper

L-colouring.

In this work, we allow one vertex in V (G) \ V (∂G) to have a 4-list.

This necessitates one more entry in the definition of canvas. We also say

that (G,S, L, x) is a canvas if x is an inner vertex of G (that is not on its

outer boundary) such that |L(x)| = 4 and (G− x, S, L) is a canvas.

We also need a few slightly different notions of ‘subcanvas’, given in

the following definition.

Definition 3.3.2. Let (G,S, L, x) be a canvas.

(a) A canvas (G′, S ′, L′, x) is a subcanvas of (G,S, L, x), and a canvas

(G′, S ′, L′) is a subcanvas of (G,S, L) or (G,S, L, x) if:

i. G′ is a subgraph of G such that V (∂G′) ⊆ V (∂G);

ii. L′ is the restriction of L to the vertices of G′; and

iii. S ′ is any subgraph of ∂G′ that has a proper L-colouring.

(b) A canvas (G′, S ′, L′, x) is a semi-subcanvas of (G,S, L, x), and a

canvas (G′, S ′, L′) is a semi-subcanvas of (G,S, L) or (G,S, L, x) if

there is a vertex s ∈ V (∂G′) not in V (∂G) such that:

i. G′ is a subgraph of G such that V (∂G′) \ {s} ⊆ V (∂G);

ii. L′ is the restriction of L to the vertices of G′; and

iii. S ′ is any subgraph of ∂G′ that has a proper L-colouring.

The right drawing of Figure 4.1 shows a broken wheel semi-subcanvas,

namely the graph bounded by xv2v3v4v5x.
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(c) For k ∈ {3, 4}, a subcanvas or semi-subcanvas (G′, S ′, L′) of (G,S, L, x)

is k-restricted if, for every vertex v in the the intersection of the

outer boundaries of G and G′, but not in S ′, |L(v)| ≤ k.

Theorem 3.3.7 below is concerned with interactions of sets of colour-

ings of two paths P and P ′ of length one in ∂G. The set Φ(P ′, C), of

colourings of P ′ that extend to all of G such that the restrictions to P

are in a particular set C, is required to contain a government if C con-

tains a government. Theorem 3.3.7 asserts that, in case C consists of one

colouring, there is only one obstruction - an accordion - to the existence

of such a government for P ′. There are no obstructions in case C contains

a government.

Definition 3.3.3. (Government [10]) Let C = {ϕ1, ϕ2, · · · , ϕk}, k ≥ 2,

be a collection of distinct colourings of a path P = p1p2 of length one.

For p ∈ P , let C(p) denote the set {ϕ(p) | ϕ ∈ C}. The collection C is:

(a) a dictatorship if there exists i ∈ {1, 2} such that ϕj(pi) is the same

for all 1 ≤ j ≤ k, in which case, pi is the dictator of C;

(b) a democracy if k = 2 and ϕ1(p1) = ϕ2(p2) and ϕ2(p1) = ϕ1(p2); and

(c) a government if it is either a dictatorship or a democracy.

Definition 3.3.4. (Accordion [10]) A graph G is an accordion with ends

distinct paths P1 and P2 of length one if either:

(a) G is a generalized wheel with principal path P1 ∪ P2; or

(b) G is the union G1 ∪G2 of two accordions G1 and G2 with ends P1,

U and U , P2, respectively, such that G1 ∩G2 = U.

Definition 3.3.5. (1-Accordion [10]) Let T = (G,P, L) be a canvas where

P is a path of length one and, for all v ∈ V (P ), |L(v)| = 1 . Let P ′ be

a path of length one in ∂G. Then T is a 1-accordion from P to P ′ if

G is an accordion whose ends are P and P ′ and there exists exactly one

L-colouring of G.
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Definition 3.3.6. [10] Suppose that T = (G,P, L) is a canvas such that

P is a path of length one in ∂G, and C is a collection of L-colourings

of P . If P ′ is another path of length one in ∂G, then ΦG(P ′, C) denotes

the collection of colourings of P ′ that can be extended to a colouring ϕ

of G such that ϕ restricted to P is a colouring in C. The subscript G is

dropped when the graph is clear from context.

Theorem 3.3.7. [10] Let T = (G,P, L) be a canvas, where P is a path of

length one, and let P ′ be a path of length one distinct from P . Let C be a

non-empty set of L-colourings of P such that, if |C| ≥ 2, then C contains

a government. Then Φ(P ′, C) does not contain a government if and only

if T contains a subcanvas T ′ such that T ′ is a 1-accordion from P to P ′

and C = {ϕ}, where ϕ is the restriction to P of the unique colouring of

T ′.

We have the following two corollaries of this theorem. We use the first

in the proofs of Theorem 4.4.2 and Lemma 2.1.2, while we use the second

in the proof of Theorem 4.3.1.

Corollary 3.3.8. Let G be a plane graph, and let P and P ′ be two paths

of length one in ∂G. Let L be a list assignment such that:

(a) for every v ∈ V (∂G), |L(v)| ≥ 3; and

(b) otherwise, |L(v)| ≥ 5.

If there is a government C of L-colourings of P , then there exists a govern-

ment C ′ of L-colourings of P ′ such that every colouring in C ′ is extendable

to a colouring of G whose restriction to P is in C.

Proof. This is a special case of Theorem 3.3.7.

Corollary 3.3.9. Let G be a plane graph, P = v1v2 a path of length one

in ∂G, and z a vertex in V (∂G) \ V (P ). Let L be a list assignment for

G such that:

(a) L(z) is a singleton;
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(b) for every v ∈ V (∂G) \ {z}, |L(v)| ≥ 3; and

(c) otherwise, |L(v)| ≥ 5.

If f is an L-colouring of P , then there is an L-colouring of G such that

its restriction to P is different from f .

Proof. Let a be the colour of z and let y be a neighbour of z in ∂G.

Let C be the dictatorship consisting of the two colourings of zy having z

coloured a and y coloured with different colours from L(y)\{a}. Theorem

3.3.7 implies Φ(P, C) contains a government. A government contains at

least two colourings, therefore, there is a colouring in Φ(P, C) different

from f .

Postle also proved a similar theorem to 3.3.7 for unions of two gov-

ernments; a confederacy.

Definition 3.3.10. (Confederacy [10]) Let C be a collection of colourings

of a path P = p1p2 of length one. Then C is a confederacy if C is the

union of two governments but is not a government.

The harmonicas referred to in the following theorem are complicated-

to-describe graphs. We will only use this theorem in the form of Corollary

3.3.12, in which case it is clear that the harmonica exception does not

arise. Thus, it is not necessary for us to know what a harmonica is here.

However, we define harmonicas in the proof of Case 1 of Claim 4.4.11

where we need them.

Theorem 3.3.11. [10] Let (G,P, L) be a canvas and P, P ′ be paths of

length one in ∂G. Given a collection C of colourings of P such that C is

either a government or a confederacy, then Φ(P ′, C) contains a confeder-

acy unless C is a government and there exists a subgraph G′ of G such

that (G′, P ∪ P ′, L) is a harmonica from P to P ′ with government C.

Corollary 3.3.12. Let G be a plane graph, and let P and P ′ be two paths

of length one in ∂G. Let L be a list assignment such that:

(a) for every v ∈ V (∂G), |L(v)| ≥ 3; and
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(b) otherwise, |L(v)| ≥ 5.

If there is a confederacy C of L-colourings of P , then there exists a confed-

eracy C ′ of L-colourings of P ′ such that every colouring in C ′ is extendable

to a colouring of G whose restriction to P is in C.
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Chapter 4

Inner 4-Lists

4.1 Introduction

The main results in this chapter are Theorems 4.3.1 and 4.4.2. Theorem

4.3.1 is an extension of Theorem 3.2.4 of Thomassen, and Theorem 4.4.2

is an extension of Theorem 4.4.1 of Postle and Thomas.

In Theorem 4.3.1 we prove that, if we change the statement of Theo-

rem 3.2.4 to allow one inner 4-list, then more wheel-like structures need

to be excluded than the generalized wheels so that the colouring of P

extends to G.

In Theorem 4.4.2 we prove that we can change the statement of Theo-

rem 4.4.1 to allow one inner 4-list if we add a few conditions on x. Those

conditions are concerned with the adjacencies between x and P and with

the situation when x is the centre of a wheel.

In Section 4.2 we prove the lemmas we need for the proofs of the the-

orems. We prove analogues of Lemma 3.2.10 for wheels, double-centred

wheels, and wheels of wheels with centre a 4-list vertex. We also prove

Proposition 2.1.2.

In Lemma 3.2.10, Thomassen proved that there is at most one bad

colouring for the principal path of a generalized wheel that is not a broken

wheel. Here we prove that there is at most one bad colouring of a path

of length one on the outer walk of a wheel with centre a 4-list. We also

prove that there is at most one bad colouring of a path of length two on
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the outer walk of a wheel of wheels under certain conditions.

4.2 Lemmas

In this section we prove analogues of Lemma 3.2.10. First we prove in

Lemma 4.2.1 that there is at most one bad colouring of a path of length

one on the outer walk of a wheel with centre a 4-list vertex. Second we

prove in Lemmas 4.2.4 and 4.2.5 that there is at most one bad colouring

of a path of length two on the outer walk of a wheel of wheels containing

exactly one inner 4-list under certain conditions. Fortunately, the con-

ditions are exceptions that do not occur in a minimum counterexample

of Theorem 4.3.1; there should be no separating 4-cycles with interiors

consisting of 5-list only, and no separating triangles. We also prove Propo-

sition 2.1.2.

The last lemma in this section, Lemma 4.2.6, is concerned with choos-

ing an appropriate colouring for a path P of length three on the outer

walk of a wheel with centre a 4-list. The colouring is chosen so that it

extends to the wheel and is chosen from two confederacies for the first

and last length-one subpaths of P .

We start with the Lemma about extending a colouring of a path of

length one to a wheel with centre a 4-list. The proof is almost the same

as the proof of Lemma 3.2.10 of Thomassen. See Figure 4.1.

Lemma 4.2.1. Let G be a wheel with centre x and outer cycle C, and

let P be a path of length one in C. Let L be a list assignment such that:

(a) for all v ∈ V (C), |L(v)| ≥ 3; and

(b) |L(x)| ≥ 4.

Then at most one colouring of P is unextendable to G.

Proof. Let C : v1v2 · · · vkv1 and P = v1v2. Suppose that v1 and v2 are

coloured f(v1) and f(v2) respectively, and that this colouring is unex-

tendable to G. We will show that f(v1) and f(v2) are uniquely defined

in terms of the other lists.
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x

v1v2

v3

v4 v5

v6

L(v1) = {1},
L(v2) = {2},

L(v3) = {2, 3, 4},
L(v4) = {3, 4, 5},
L(v5) = {3, 4, 5},

L(v6) = {1, 3, 4} and
L(x) = {1, 2, 3, 4}.

x

v1

v2

v3

v4

v5

L(v1) = {1},
L(v2) = {2},

L(v3) = {1, 2, 4},
L(v4) = {1, 3, 4},
L(v5) = {3} and
L(x) = {1, 2, 3, 4}.

Figure 4.1: Wheels with centre a 4-list. The colouring of the thick path
is bad.

First, there are at most two colours in L(v3) \ {f(v2)}. Suppose there

are more, and let L′ be the list assignment of G − v1 − v2 obtained by

deleting from L(v), for every v ∈ G, the colours of its neighbours in P .

Then |L′(x)| ≥ 2, |L′(vk)| ≥ 2 (we may assume that k > 3), |L′(v3)| ≥
3 (by assumption) and L(v) ≥ 3 otherwise. This is colourable by Thomassen

(the two 2-lists are adjacent and we can colour them first to have a pre-

coloured edge). Similarly, L(vk) \ {f(v1)} consists of exactly two colours.

Let L(v3) \ {f(v2)} = {α, β}, and L(vk) \ {f(v1)} = {γ, δ}.

Now we show that L(x)\{f(v1), f(v2)} = {α, β} = {γ, δ}. Suppose

for contradiction that L(x) \ {f(v1), f(v2)} has a colour ε distinct from α

and β. We can then colour x by ε, give v3 the list {α, β, ε} and extend the

colouring to G − v1 − v2 by Thomassen, a contradiction. That {γ, δ} =

L(x) \ {f(v1), f(v2)} too follows by symmetry.

Thus L(v3) and L(vk) have precisely two colours in common and f(v1)

is the unique colour in L(vk)\L(v3) and f(v2) is the unique colour in

L(v3) \ L(vk).
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It is now convenient to restate and prove Proposition 2.1.2 since we

use Lemma 4.2.1 in the proof. We use Theorem 4.3.1 in the proof as well.

Theorem 4.3.1 is stated and proved in Section 4.3 which is dedicated for

it. Proposition 2.1.2 is not used in the proof of Theorem 4.3.1, and so

there is no vicious circle.

Proposition 2.1.2. Let G be a plane graph and let x and y be two inner

vertices of G that are the centres of wheels W1 and W2, respectively, in G.

Suppose that, for i ∈ {1, 2}, V (∂Wi) ⊆ V (∂G). Let L be a list assignment

such that:

(a) for every v ∈ ∂G, |L(v)| ≥ 3;

(b) |L(x)| = |L(y)| = 4; and

(c) otherwise, |L(v)| ≥ 5.

Then G is L-colourable.

Proof.

Claim 4.2.2. G is 2-connected.

Proof. Suppose for a contradiction that G has a cut vertex. If one of

the blocks contain both x and y, we colour this block by induction then

colour the rest of the graph by Theorem 3.2.6. If x and y are contained in

different blocks, we colour the block containing x first by Theorem 4.3.1

(the theorem has no conditions in case the precoloured path is empty),

then colour the rest of the graph also by Theorem 4.3.1 (the theorem has

no conditions in case the precoloured path consists of one vertex).

Hence C is a cycle and we may suppose that C = v1 · · · vkv1.

Claim 4.2.3. There are chords vlvm and vrvs, l < r < s < m such that

the subgraph H bounded by vl · · · vrvs · · · vmvl has all its inner vertices

having lists of size at least five, and such that vlvm is an edge in the outer

cycle of the wheel W1 with centre x and vrvs is an edge in the outer cycle

of the wheel W2 with centre y.
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Proof. Follows from planarity and symmetry of x and y.

Now by Lemma 4.2.1 there is at most one colouring of vrvs unextend-

able to W2. Let a be a colour in L(vs) different from the colour involved

in the unique colouring of vrvs unextendable to W2, and let b and c be

two different colours in L(vr) \ {a}. Let C := {ϕ1, ϕ2} where ϕ1 and ϕ2

are two colourings of vrvs defined by ϕ1(vs) = ϕ2(vs) = a, ϕ1(vr) = b and

ϕ2(vr) = c. Then C is a dictatorship, that is it contains a government,

and so by Corollary 3.3.8, ΦH(vlvm, C) contains a government.

Again by Lemma 4.2.1, there is at most one colouring of vlvm unex-

tendable to W1. Colour vlvm by a colouring from ΦH(vlvm, C) (recall that

a government contains at least two different colourings) different from the

unique colouring unextendable to W1. Then extend that colouring to H

such that the colouring of vrvs is in C (we can do this by the definition of

ΦH(vlvm, C)). Now colour W2 and W1 then colour each of the remaining

uncoloured parts of G by Theorem 3.2.6.

Now we prove the lemmas concerning double-centred wheels and wheels

of wheels.

Lemma 4.2.4. Let W be a double-centred wheel with centres x and y and

outer cycle C := v1v2 · · · vkv1, and let L be a list assignment of W such

that:

(a) for every v ∈ V (C), |L(v)| ≥ 3;

(b) |L(x)| ≥ 4; and

(c) otherwise, |L(v)| ≥ 5.

Suppose also that:

(i) x is not the centre of a wheel whose outer cycle is a triangle; and

(ii) y is not the centre of a wheel whose outer cycle is a triangle or a

4-cycle.

Then there is at most one bad colouring of P := v2v1vk.

39



Proof. We consider three cases, depending on which vertices of P are ad-

jacent to x and y. See Figures 4.2 and 4.3 for examples of the three cases.

Case 1. x is adjacent to all vertices of P .

In this case, there are indices r and s such that 2 ≤ r ≤ s ≤ k; for

i ∈ {1, · · · , r} ∪ {s, · · · , k}, vi is adjacent to x ; and for i ∈ {r, · · · , s}, vi
is adjacent to y.

Note that vr and vs are not adjacent since y is not the centre of a wheel

whose outer cycle is a triangle. Let ϕ be a bad colouring of P . By Lemma

3.2.10, there is at most one colouring of vrxvs that is unextendable to the

wheel with centre y and outer cycle vrvr+1 · · · vsxvr.
Therefore, there is exactly one colour in L(x) \ {ϕ(v2), ϕ(v1), ϕ(vk)},

let a denote this colour. Then the lists of the vertices v3 to vr are

{ϕ(v2), a, a3}, {a, a3, a4}, · · · , {a, ar−1, ar}

and the lists of vk−1 to vs are

{ϕ(vk), a, ak−1}, {a, ak−1, ak−2}, · · · , {a, as+1, as}.

Any colouring that gives P a set of colours different from {ϕ(v2), ϕ(v1),

ϕ(vk)} allows x to be coloured by a colour different from its colour in the

unique bad colouring of vrxvs, and so we consider only colourings of P

that permute the colours of ϕ.

Let ϕ′ be a colouring of P different from ϕ such that ϕ(V (P )) =

ϕ′(V (P )). Then either ϕ′(v2) 6= ϕ(v2) or ϕ′(vk) 6= ϕ(vk). Suppose with-

out loss of generality that ϕ′(v2) 6= ϕ(v2). In case P is coloured by ϕ′, x

is still forced to be coloured by a but the vertices from v3 to vr can now

be coloured ϕ(v2), a3, · · · , ar−1 instead of a3, a4 · · · , ar (they are forced to

be coloured so when P is coloured by ϕ). Now the bad colouring of vrxvs

is avoided (since vr is coloured differently).

Case 2. Neither x nor y is adjacent to all vertices of P .
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In this case, there is an index s, 2 < s < k, such that: for i ∈ {1, · · · , s},
vi is adjacent to x; and for i ∈ {1} ∪ {s, · · · , k}, vi is adjacent to y.

We have two broken wheels W1 and W2 with principal paths P1 :=

v2xvs and P2 := vkyvs respectively (W1 is bounded by the cycle v2v3 · · ·
vsxvsv2 and W2 is bounded by the cycle vkvk−1 · · · vsyvk). Let ϕ be a bad

colouring of P .

When P is coloured by ϕ, the vertex v2 in P1 is coloured ϕ(v2). Then

according to the five possibilities of Lemma 3.2.11, the bad colourings of

xvs for W1 are a subset of a set of two colourings that:

(a) either alternate the colours of x and vs, for example {ab, ba} (call

this the first type); or

(b) both give vs the same colour but change the colour of x, for example

{ac, bc} (call this the second type).

Similarly for yvs and W2.

Subcase 2.1. Both xvs and yvs have their bad colourings of the sec-

ond type, or s = 3 (so that v2 and vs are adjacent) and yvs has its bad

colourings of the second type.

In this case, it is two colours of vs that we want to avoid in order to

avoid the bad colourings of xvs and yvs. Since vs has a list of size at

least three, we can avoid those two colours, colour x, then colour y, and

then extend the colouring to W1 and W2. This means that ϕ is not a bad

colouring, a contradiction.

Note that we do not have to consider the case when s = k − 1 as we

considered s = 3 since y is adjacent to at least four vertices on C.

Subcase 2.2. At least one of xvs and yvs has its bad colourings of the

first type.
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x y

v6

v1

v2

v3

v4

v5

L(v1) = {2}, L(v2) = {3},
L(v3) = {2, 3, 4}, L(v4) = {2, 3, 5},
L(v5) = {1, 3, 5}, L(v6) = {1},

L(x) = {1, 2, 3, 4} and
L(y) = {1, 2, 3, 4, 5}.

x
y

v1

v2

v3

v4

v5

v6

v7

v8

v9

L(v1) = {1}, L(v2) = {2},
L(v3) = {2, 3, 4}, L(v4) = {2, 3, 4},
L(v5) = {2, 3, 4}, L(v6) = {2, 3, 4},
L(v7) = {2, 3, 4}, L(v8) = {3, 4, 5},
L(v9) = {5}, L(x) = {1, 2, 3, 4} and

L(y) = {1, 2, 3, 4, 5}.

Figure 4.2: Double-Centred Wheels.

It is easy to see that L(vs) cannot contain a colour not involved in a

bad colouring of yvs or xvs (not equal to ϕ(v2) in case s = 3). In case

s 6= 3, we may assume without loss of generality that each of xvs and

yvs has two bad colourings (not only one) since otherwise the problem is

easier.

Since there are at most two colours of vs involved in bad colourings of

yvs, there is a colour in L(vs) that is not involved in a bad colouring of

yvs. This colour either equals ϕ(v2) in case s = 3 or is involved in a bad

colouring of xvs otherwise). Similarly, there is a colour in L(vs) that is

not involved in a bad colouring of xvs (or is different from ϕ(v2)) but is

involved in a bad colouring of yvs.

Note that in case s = 3, any colour of x when vs is coloured ϕ(v2)

can be counted as involved in a bad colouring. Then whether the bad

colourings of xvs are of the first or the second type or whether s = 3,

there are at least two colours of x involved in bad colourings. Denote

those two colours by a and b.
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L(v1) = {2}, L(v2) = {1}, L(v3) = {1, 4, 5}, L(v4) = {1, 4, 5},
L(v5) = {1, 4, 5}, L(v6) = {2, 4, 5}, L(v7) = {2, 4, 5}, L(v8) = {3, 4, 5},

L(v9) = {3}, L(x) = {1, 2, 4, 5} and L(y) = {1, 2, 3, 4, 5}.

Figure 4.3: Double-Centred Wheels.

We have the following four cases.

(i) s = 3 and the bad colourings of yvs are of the first type.

In this case, L(v3) = {ϕ(v2), c, d} where the bad colourings of yvs are

{cd, dc}. If L(x) contains c we colour x with c, colour v3 with d, then

colour y with a colour different from c and d. Then the colouring of vkyvs

is extendable to W2. Thus we may assume that L(x) does not contain c

and similarly does not contain d, i.e., each of a and b is different from c

and d.

(ii) Both xvs and yvs have their bad colourings of the first type.

Suppose that the bad colourings of yvs are {cd, dc}. Since we assumed

that a and b are two colours of x involved in bad colourings of xvs and

the bad colourings of xvs are of the first type, those bad colourings are

ab and ba.

Recall that L(vs) contains a colour that is not involved in a bad colour-

ing of yvs but is involved in a bad colouring of xvs. If L(x) contains a
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colour different from a and b we can colour x with this colour, colour

vs by a or b depending on which of them is in L(vs) and is different

from c and d. Colour y, then extend the colouring to W1 and W2. Thus

L(x) \ {ϕ(v2), ϕ(v1)} = {a, b}.
Consider the two cases when s = 3 or xvs has its bad colourings of

the first type, while yvs has its bad colourings of the first type. In case

s = 3 colour vs by a colour different from ϕ(v2). In the second case,

colour x by a or by b, and then colour vs by a colour different from b or

respectively a. Then yvs is forced to be coloured cd or dc. This means

that {a, b} ∩ {ϕ(v1), ϕ(vk), c, d} = ∅ and L(y) contains ϕ(v1), ϕ(vk), a, b,

c and d, a contradiction. To see this recall that c and d are different from

ϕ(v1) and ϕ(vk) by definition, that is since cd and dc are bad colourings

of yvs when P is coloured by ϕ.

Thus for at least one of a and b, yvs can be coloured by a good colour-

ing for W2 (such that the colour given to vs together with the colour

given to x make a good colouring of xvs). This means that ϕ is not a bad

colouring, a contradiction.

(iii) The bad colourings of xvs are of the second type and of yvs are of the

first type.

Then there is a colour c such that the bad colourings of xvs are {ca, cb}
and there are colours e and f such that the bad colourings of yvs are

{ef, fe}.
Since L(vs) does not contain a colour that avoids the bad colourings

of both xvs and yvs, c /∈ {e, f} and L(vs) = {c, e, f}. As |L(y)| ≥ 5,

there is a colour d ∈ L(y) \ {ϕ(v1), ϕ(vk), e, f} (note also that {e, f} ∩
{ϕ(v1), ϕ(vk)} = ∅ by the definition of e and f). If d 6= a, we can colour

y by d, colour x by a then colour vs by either e or f depending on which

of them is different from a. This colouring is extendable to W1 and W2,

a contradiction. Thus d = a and also by symmetry d = b. Thus a = b, a

contradiction.
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(iv) The bad colourings of xvs are of the first type and of yvs are of

the second type.

The bad colourings of xvs are {ab, ba} and there are colours c, e and

d such that the bad colourings of yvs are {cd, ce}.
It is not hard to see that the assumption that ϕ is a bad colour-

ing for P implies that L(vs) = {a, b, c}, L(x) = {ϕ(v1), ϕ(v2), a, b} and

{ϕ(v1), ϕ(vk), c, d, e} ⊆ L(y). If c is not in L(y) then by colouring vs with

c we avoid the bad colourings of xvs and still have three colours in L(y)

enough to avoid d and e. Now we consider any colouring ϕ′ of P different

from ϕ and show it is a good colouring.

Suppose for a contradiction that ϕ′ is a bad colouring for P , and let P

be coloured by ϕ′. If ϕ(v2) 6= ϕ′(v2), then the set of bad colourings of xvs

is different from what it was in the case when P is coloured ϕ. Similarly,

if ϕ(vk) 6= ϕ′(vk), then the set of bad colourings of yvs is different from

what it was in the case when P is coloured ϕ. Since L(vs) = {a, b, c}, in

case P is coloured ϕ′, the set of bad colourings of xvs is either {bc, cb} or

{ca, ac}.
We may assume without loss of generality it is {ca, ac}. Thus a and

c are colours of x involved in bad colourings of v2xvs when P is coloured

ϕ′. Since a and b are colours of x involved in a bad colouring of v2xvs

when P is coloured ϕ, all the lists of the vertices vi with 3 ≤ i ≤ s are

equal to {a, b, c}. In particular, since L(v3) = {a, b, ϕ(v2)}, ϕ(v2) = c.

Since we assumed that the bad colourings of xvs are {ac, ca} in case

P is coloured ϕ′, the colour of vs involved in the bad colourings of yvs

is b. Since L(vs+1) = {c, d, e}, b ∈ {d, e}. We may assume without loss

of generality that b = d, and so the bad colourings of yvs in case P is

coloured ϕ′, are bc and be.

Thus e and c are colours of y involved in bad colourings of vkyvs

when P is coloured ϕ′, and, d(= b) and e are colours of y involved in

bad colourings of vkyvs when P is coloured ϕ. Thus all the lists of the

vertices vi with s ≤ i ≤ k − 1 are equal to {b, c, e}. In particular, since

L(vk−1) = {ϕ(vk), d, e} (and d = b), ϕ(vk) = c.
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Now that we know that ϕ(v2) = ϕ(vk) = c, we see that in the case

when P was coloured ϕ, we could have coloured vs with c, x with b, and

y by a colour different from ϕ(v1), c = ϕ(vk) (the colours of vs and vk)

and b(= d) (the colour of x). This gives v2xvs and vkyvs colourings ex-

tendable to W1 and W2, a contradiction to the assumption that ϕ is a

bad colouring of P .

Case 3. y is adjacent to all vertices of P .

In this case, there are indices r and s, 2 ≤ r ≤ s ≤ k, such that: for

i ∈ {r, · · · , s}, vi is adjacent to x; and for i ∈ {1, · · · , r} ∪ {s, · · · , k}, vi
is adjacent to y.

Note that vr and vs are not consecutive on C since x is not the cen-

tre of a triangle, and either r 6= 2 or s 6= k since y is not the cen-

tre of a 4-cycle. We have a broken wheel W1 with major vertex x and

outer cycle xvrvr+1 · · · vsx and a wheel W2 with centre y and outer cycle

v1 · · · vrxvsvs+1 · · · vkv1.
Let ϕ be a bad colouring of P . In every case in Lemma 3.2.11, there

are at most four colours that appear in bad colourings of vrxvs for W1.

Suppose that the number is at most three, that is there is a set S of size

three such that for every bad colouring ψ of vrxvs, {ψ(vr), ψ(x), ψ(vs)} ⊆
S. Since |L(x)| = 4, there is a colour θ in L(x) \ S. Since |L(y)| ≥ 5,

there is a colour λ in L(y) different from θ, ϕ(v2), ϕ(v1) and ϕ(vk).

When P is coloured with ϕ, we can colour y with λ, colour the vertices

from v3 to vr in ascending order of indices, then colour the vertices from

vk−1 to vs in descending order of indices. If vr or vs receives a colour not

in S, we are done. If both vr and vs receive colours in S then we can

colour x with θ. This colouring is extendable to W1, a contradiction.

Therefore there are four distinct colours a, b, c and d such that the

bad colourings of vrxvs are acb and adb. Recall that either r 6= 2 or s 6= k.

We may assume without loss of generality that r 6= 2. Let e and f be two

colours in L(y) \ {ϕ(v2), ϕ(v1), ϕ(vk)}.
If when P is coloured ϕ, vr is forced to be coloured a whether we
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colour y with e or with f , then e and f are in the lists of all the vertices

vi with 3 ≤ i ≤ r. In particular L(v3) = {ϕ(v2), e, f}.
Thus in this case, there is no third colour in L(y)\{ϕ(v2), ϕ(v1), ϕ(vk)}

that forces vr to be coloured a. If there is such a colour, then L(v3)

contains that colour besides ϕ(v2), e and f , i.e. it has size four, but v3

has degree three and so we could have coloured vr differently from a then

colour v3 at the end.

Now we may assume without loss of generality that L(y)\{ϕ(v2), ϕ(v1),

ϕ(vk)} = {e, f} and that both colours force vr to be coloured a. Now con-

sider any colouring ϕ′ different from ϕ.

If the set L(y) \ {ϕ′(v2), ϕ′(v1), ϕ′(vk)} contains a colour g different

from e and f that forces vr to be coloured a then the lists of all the

vertices vi with 3 ≤ i ≤ r are equal to {e, f, g}, a contradiction. Note that

a /∈ {e, f, g} since vr receives the colour a when its neighbour y is coloured

e, f and g. Therefore we may assume that L(y)\{ϕ′(v2), ϕ′(v1), ϕ′(vk)} =

L(y) \ {ϕ(v2), ϕ(v1), ϕ(vk)} = {e, f}.
Thus ϕ and ϕ′ are just different permutations of the same three colours

among the vertices of P . Then either ϕ(v2) 6= ϕ′(v2) or ϕ(vk) 6= ϕ′(vk).

If s = k and ϕ(vk) 6= ϕ′(vk) then the bad colouring of vrxvs is avoided.

If s 6= k then the argument above with vr could by symmetry have been

done with vs. Therefore we may assume without loss of generality that

ϕ(v2) 6= ϕ′(v2).

Thus at least one of e and f does not force vr to be coloured a when P

is coloured ϕ′ since otherwise L(v3) contains ϕ′(v2) besides ϕ(v2), e and

f , i.e. has size four, a contradiction. Hence ϕ′ is a good colouring and ϕ

is the only bad colouring for P .

Note that if a wheel of wheels is not a double-centred wheel then it

has a well-defined centre.

Lemma 4.2.5. Let W be a wheel of wheels that is neither a wheel nor a

double-centred wheel. Suppose that W has outer cycle C := v1v2 · · · vkv1
and an inner vertex x. Let L be a list assignment of W such that:

(a) for every v ∈ V (C), |L(v)| ≥ 3;
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(b) |L(x)| ≥ 4; and

(c) otherwise, |L(v)| ≥ 5.

Suppose also that:

(i) there are no separating triangles; and

(ii) there are no separating 4-cycles with interior consisting of 5-lists

only.

Then there is at most one bad colouring of P := v2v1vk.

Proof. Let ϕ be a bad colouring of P .

Case 1. The centre of W is x.

Let r and s be the smallest and largest indices respectively such that

r, s ≥ 2 and x is adjacent to vr and vs (as 5 and 9 in Figure 4.4). If

the subgraph G1 bounded by xvrvr+1 · · · vsx is not a broken wheel with

principal path vrxvs, then by Lemma 3.2.10 there is at most one colouring

of vrxvs that is unextendable to G1.

In that case delete from L(x) the colour of x in that colouring. Again

by Lemma 3.2.10 the subgraph G2 bounded by v1v2 · · · vrxvs · · · vkv1 is

colourable, with this new list of L(x), when P is coloured by any colouring

different from ϕ.

If G1 is a broken wheel with principal path vrxvs, then W consists

of three sections, since W is neither a wheel nor a double centred wheel.

Two of those sections are wheels and together they form G2, the third

section is the broken wheel G1, and x is adjacent to v1, vr and vs.

Let z1 be the centre of the wheel bounded by v1v2 · · · vrxv1, and z2

be the centre of the wheel bounded by v1xvs · · · vkv1 (as in Figure 4.4).

Let W1 be the broken wheel bounded by vrz1v2 · · · vr and W2 the broken

wheel bounded by vkz2vs · · · vk. Note that v2z1vr is the principal path of

W1 and vkz2vs is the principal path of W2.

Now when P is coloured with ϕ, there are at most two colourings of

z1vr that are bad for W1 and at most two colourings of z2vs that are bad
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Figure 4.4: A wheel of wheels with centre x and three sections, a broken
wheel and two wheels with centres z1 and z2.

for W2. Therefore, there are at least four colourings of z1vr that are good

for W1 and at least four colourings of z2vs that are good for W2 (this is

true whether vr is adjacent to v2 or not and whether vs is adjacent to vk

or not).

Note that, two colourings of z2vs that give vs different colours have

extensions to x such that the resulting colourings of xvs are still different

at vs. Similarly, two colourings of z2vs that give vs the same colour but

give z2 different colours can be extended by giving different colours to x

so that the resulting colourings of xvs are different.

Note also that, by Lemma 3.2.11, we have two cases for the colours

of vs involved in good colourings of z2vs. One case is, there are at least

three colours of vs involved in good colourings of z2vs and at least one of

those colours is involved in two good colourings of z2vs. The other case

is, there are only two colours of vs involved in good colourings of z2vs and

each of them is involved in at least two good colourings of z2vs.

Thus, there is a set of four pairwise distinct colourings of xvs such

that each of those colourings is compatible with at least one of the good

colourings of z2vs.

There is also a set of four pairwise distinct colourings of G1 such that

each of them is compatible with at least one of the good colourings of

xvs and such that their restrictions to xvr are pairwise distinct. That the
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Figure 4.5: L(v1) = {4}, L(v2) = {1}, L(v3) = {1, 4, 5}, L(v4) = {3, 4, 5},
L(v5) = {2, 3, 5}, L(v6) = {1, 4, 5}, L(v7) = {1, 3, 4}, L(v8) = {3}, L(x) =
{1, 2, 3, 4} and L(y) = L(z) = {1, 2, 3, 4, 5}.

restrictions to xvr are pairwise distinct can be seen by extending each

colouring of xvs by colouring from vs to vr in descending order of indices

as long as we are forced (that is have only one colour choice).

If the two colourings of xvs have different colours of x, then this is

still the case in the resulting two colourings of xvr. On the other hand,

if they give x the same colour but give vs different colours, then, as long

as we are forced, we have different colours with both colourings of xvs at

every step along the descending indices. If we have choice at some index,

then we can jump to vr and give it different colours with each colouring

of xvs then go in ascending order of indices until we come back to the

vertex were we have choice.

Now from the set of four pairwise distinct colourings of xvr we have

a set of four pairwise distinct colourings of z1vr such that each of them

is compatible with ϕ and with at least one of the four colourings of xvs.

Since there are at most two bad colourings of z1vr for W1, at least two of

the four colourings we obtained for z1vr are good for W1. Thus we have

a colouring of the whole graph.

Case 2. The centre of W is not x.

Let y be the centre of W .
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L(v1) = {2}, L(v2) = {1}, L(v3) = {1, 2, 5}, L(v4) = {2, 3, 5},
L(v5) = {3}, L(x) = {1, 2, 3, 4} and L(y) = {1, 2, 3, 4, 5}.

Figure 4.6: Wheels of Wheels

Subcase 2.1. x is adjacent to all the vertices of P .

The subgraph G− v1 is not a broken wheel with principal path v2xvk

since W is not a wheel. Therefore by Lemma 3.2.10 there is at most one

colouring of v2xvk unextendable to G − v1. Since ϕ is a bad colouring,

there is only one colour c in L(x) \ {ϕ(v2), ϕ(v1), ϕ(vk)} and ϕ(v2)cϕ(vk)

is the unique colouring of v2xvk unextendable to G− v1.
Any colouring of P that is different from ϕ at v2 or at vk gives v2xvk a

colouring different from its unique bad colouring. So consider a colouring

ψ of P such that ψ(v2) = ϕ(v2), ψ(vk) = ϕ(vk) but ψ(v1) 6= ϕ(v1). Then

ϕ(v1) ∈ L(x) \ {ψ(v2), ψ(v1), ψ(vk)}, and so we can colour x with ϕ(v1),

which is a colour different from c, and avoid the unique bad colouring of

v2xvk.

Subcase 2.2. x is not adjacent to v1.

See Figures 4.7 and 4.8 for examples. Note that x is the centre of

a wheel section of W . Then there are indices l and m, l,m ≥ 2 such

that the vertices of C in the wheel section centred at x are vi such that
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Figure 4.7: The case when x is not adjacent to v1.
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Figure 4.8: The case when x is not adjacent to v1.

l ≤ i ≤ m. Thus y is adjacent to vl and vm.

By Lemma 3.2.11, the colourings of vlxvm unextendable to the broken

wheel bounded by xvl · · · vmx:

(1) either have values in a fixed 3-set; or

(2) are two colourings that give vl the same colour and give vm the same

colour but give x two different colours.

In case (1), since |L(x)| = 4, L(x) contains a colour c that does not

appear in any of the bad colourings of vlxvm (not as a colour of x nor

vl nor vm). Now consider the 2-chord vlyvm, it has P on one side and

x on the other side. The side of vlyvm containing P is colourable by

Theorem 3.2.4 if y is given the list L(y) \ {c} and P is coloured ϕ since

|L(y) \ {c}| ≥ 4.

Then, if this colouring gives vl or vm the colour c, the bad colourings of

vlxvm are avoided, and if it does not, then we still can colour x the colour
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c since neither y nor vl nor vm is coloured c. Thus the bad colourings of

vlxvm are avoided and the graph is colourable.

In case (2), suppose that the two bad colourings of vlxvm are acb and

adb. We need to show that when P is coloured by any colouring different

from ϕ, we can colour the side of vlyvm containing P such that either vl

is not coloured a or vm is not coloured b.

Let r and s be the smallest and largest indices respectively such that

r, s ≥ 2 and y is adjacent to vr and vs, and let G′ be the subgraph bounded

by v1 · · · vryvs · · · vkv1. The subgraph G′ can be:

• a union of two wheels that intersect only in yv1;

• the union of two triangles that intersect only in yv1 (as in the left-

most drawing of Figure 4.8);

• the union of a wheel and a triangle that intersect only in yv1 (as in

the leftmost drawing in Figure 4.7); or

• a wheel.

Note that x is not adjacent to v2 and vk together since then we will

have a separating 4-cycle with interior consisting of 5-lists only.

• Suppose G′ is the union of two wheels.

Let w be the centre of the wheel with principal path vkv1y (as in

the rightmost drawing of Figure 4.8). Let f be the colour of y in the

unique colouring of yv1v2 unextendable to the subgraph H1 bounded by

v1v2 · · · vlyv1.
Consider the subgraph H2 bounded by vk−1wyvm · · · vk−1 with the

list assignment L′ defined as, L′(vk−1) = L(vk−1) \ {ϕ(vk)}, L′(w) =

L(w) \ {ϕ(v1), ϕ(vk)}, L′(y) = L(y) \ {ϕ(v1), f}, L′(vm) = L(vm) \ {b}.
Note that m 6= k− 1 since there are no separating 4-cycles whose interior

consists of 5-lists only, and L′(v) = L(v) otherwise.

This subgraph, H2, is L′-colourable by Theorem 3.2.8. Fix an L′

colouring of H2 and note that now the bad colourings of vlxvm are avoided

since vm is coloured by a colour different from b. Now colour H1 (note
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that vl and vm are not adjacent since there are no separating triangles,

and so the colourings of H1 and H2 are compatible), colour x, then colour

the broken wheel bounded by xvl · · · vmx.

• Suppose G′ is the union of two triangles.

Then since W is not a double centred wheel, at least one of the two

subgraphs bounded by yv2 · · · vly and yvm · · · vkvky is not a broken wheel.

Suppose without loss of generality that the subgraph H bounded by

yv2 · · · vly is not a broken wheel (then in particular it is not a trian-

gle). Then by Lemma 3.2.10 there is at most one colouring of v2yvl that

is unextendable to H.

Therefore there is at least one colour in L(vl) that is different from a

and from the colour of vl in that unique bad colouring of vlyv2. Colour vl

with that colour (this is safe since vl and v2 are not adjacent since H is

not a triangle and since there are no separating triangles), colour y, then

colour H.

Now colour the subgraph bounded by yvm · · · vkvky by Theorem 3.2.6

(this colouring is compatible with the colouring of H since vm and vl are

not adjacent). Finally colour x then colour the broken wheel bounded by

xvl · · · vmx.

• Suppose G′ is the union of a wheel and a triangle.

Suppose without loss of generality that the triangle is vkv1y and the

wheel is the subgraph bounded by v1v2 · · · vryv1 and that it has centre z

(as in the middle drawing of Figure 4.8). Suppose first that l 6= r and

m 6= s and that the subgraph H bounded by vkyvm · · · vk is not a broken

wheel.

Colour vm by a colour different from b and from the colour of vm in

the unique colouring of vkyvm unextendable to H. Delete that colour

from the lists of y and x, then the subgraph bounded by yzv3 · · · vly is

colourable by Theorem 3.2.8 (the 2-lists are at y and v3, after deleting
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from their lists the colours of their neighbours in P ). Now colour H then

colour the broken wheel bounded by xvl · · · vmx.

Consider now the case when H is a broken wheel. The list L(y) \
{ϕ(v1), ϕ(vk)} contains two colours different from the colour of y in the

unique colouring of yv1v2 unextendable to the subgraph bounded by

yv1v2 · · · vly. Colour y with one of those two colours then colour the

vertices from vk−1 to vm in descending order of indices.

If the colour vm receives is b, recolour y by the other colour then

recolour the vertices from vk−1 to vm again in descending order of indices.

Since the first colour given to y forced vm to be coloured b, and since vk

is still coloured the same, now vm is either forced to be coloured a colour

different from b or has the choice to be coloured a colour different from

b. Finally colour the subgraph bounded by yv1v2 · · · vly, then colour the

broken wheel bounded by xvl · · · vmx.

Now suppose that m = s = k but l 6= r. Suppose that the colour of vk

is b, so we have to avoid colouring vl with a. Delete a from the list of vl,

colour the subgraph bounded by yzv3 · · · vly by Theorem 3.2.8 (the 2-lists

are at vl and v3), then colour the broken wheel bounded by xvl · · · vkx.

If m = s = k and l = r (as in the leftmost drawing of Figure 4.7),

then colour z and vr such that the colour of vr is different from a and

the colouring of v2zvr is extendable to the broken wheel bounded by

zv2 · · · vrz.

Such a colouring exists since with v2 coloured ϕ(v2), there are still

three colours in the list of z and three colours in the list of vr as vr and

v2 are not adjacent, and by Lemma 3.2.11, there are at most two bad

colourings of vrz, either of the form ef and fe, or gf and ge. Now colour

y, then colour the broken wheel bounded by xvr · · · vkx.

• Suppose G′ is a wheel.

Let z be the centre of G′. We may suppose that at most one of r = l

and s = m holds since otherwise we have a separating 4-cycle with interior

consisting of 5-lists only as in the rightmost drawing of Figure 4.7 (the

graph is colourable in this case though but we will not write the proof).
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By symmetry there are only two cases, l = r and m 6= s, or both l 6= r

and m 6= s. In the first case, if r 6= 2, colour z (which has two available

colours) a colour such that when colouring the vertices from v3 to vr in

ascending order of indices, vr receives a colour different from a. Now

colour the vertice from vk−1 to vs in descending order of indices, colour y,

colour the graph bounded by yvm · · · vsy by Theorem 3.2.6, then colour

the broken wheel bounded by xvr · · · vmx.

If r = 2, colour the vertices from vk−1 to vs in descending order of

indices. Let H be the subgraph bounded by yvm · · · vsy. In case H is not

a broken wheel, colour y (which now has two available colours) a colour

that is different from the colour of y in the unique colouring of vmyvs

unextendable to H. In case H is a broken wheel, colour y a colour that

does not force vm to be coloured b. Now colour H then colour the broken

wheel bounded by xv2 · · · vmx.

In the second case, l 6= r and m 6= s, we again colour the subgraph

G′ − y. Colour y a colour with a colour that is different from the colour

of y in the unique colouring of vmyvs unextendable to H in case H is not

a broken wheel. In case H is a broken wheel, colour y a colour that does

not force vm to be coloured b. Then we colour H, then by Theorem 3.2.6

we colour the subgraph bounded by yvr · · · vly, and finally we colour the

broken wheel bounded by xvl · · · vmx.

Now we consider the case when x is adjacent to v1 and only one other

vertex of P (as in Figure 4.9). We assume without loss of generality that

that vertex is v2. Suppose first that y is adjacent to vk. Let r be the

smallest index such that r ≥ 2 and y is adjacent to vr.

Thus W consists of three parts, a wheel with centre x and outer cy-

cle v1v2 · · · vryv1, a triangle v1yvkv1, and a generalized wheel W ′ that is

not a broken wheel (since W is not a double-centred wheel) bounded by

yvr · · · vky (see the leftmost drawing in Figure 4.9).

There are at least two colours in L(x) \ {ϕ(v1), ϕ(v2)}. Colour x

with one of those two colours then colour the vertices from v3 to vr in

ascending order of indices. If this colouring gives vr the colour of the

unique colouring of vryvk unextendable to W ′, we recolour x with the
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Figure 4.9: The case when x is adjacent to v1 and only one other vertex
of P .

other colour then again colour the vertices from v3 to vr in ascending

order of indices. Then vr receives a colour different from the one of the

previous colouring and so the bad colouring of vryvk is avoided. Now

colour y (still has a colour in its list since only four of its neighbours are

coloured, vk, v1, x and vr) then colour W ′.

Suppose now that y is not adjacent to vk and let vr and vs be as before.

Then the graph W1 bounded by v1v2 · · · vryv1 is a wheel with centre x, the

graph W2 bounded by v1yvs · · · vkv1 is a wheel with centre a 5-list vertex

z, and the graph W3 bounded by yvr · · · vsy is a generalized wheel (can

be a broken wheel), as in the middle and rightmost drawings in Figure

4.9.

If W3 is not a broken wheel then by Lemma 3.2.10 there is at most

one colouring of vryvs that is bad for W3. We can choose a colour for x

such that when we colour the vertices from v3 to vr in ascending order of

indices we have vr coloured by a colour different from that of the unique

bad colouring of vryvs for W3. Then of the two colours remaining for y

(the only coloured neighbours are v1, x and vr, since vk is not a neighbour

of y by assumption), choose the one such that the bad colouring of yv1vk

for W2 is avoided. Colour W2 then colour W3.

Now suppose that W3 is a broken wheel. Let W ′
1 be the broken wheel

bounded by xv2 · · · vrx.

• If the bad colourings of vryvs for W3 have their values in some fixed

3-set we say that they are of type 1 ; and
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• If they are two colourings that give vr the same colour and give vs the

same colour but give y different colours, we say that they are of type 2.

We have the following cases.

(1) (i) r = 3 and W3 is a triangle, or

(ii) W3 is not a triangle and the bad colourings of v3yvs for W3 are

of type 1.

Consider first a colouring ψ of P whose restriction to v1vk is not a

part of a bad colouring of yv1vk for W2. Let a and b be the two

colours in L(x) not in {ψ(v2), ψ(v1)} and {c, d} the two colours in

L(y) \ {a, b, ψ(v1)}.

In case (i), if when colouring y with one of c or d then colouring

W2, the colour v4 receives allows v3 to be coloured, we are done. In

case (ii), if |L(v3) \ {ψ(v2), c}| ≥ 2 or |L(v3) \ {ψ(v2), d}| ≥ 2, we

are done.

Therefore we may assume that L(v3) = {ψ(v2), c, d}. Now colour y

with one of a and b (note that none of them is in L(v3)), colour W2.

Then at most two of the coloured neighbours of v3 have colours in

L(v3).

At least one of c and d is not used in colouring v4 in case (i), or

at least one of them makes the colouring of v3yvs good for W3 with

the given colours for y and vs, in case (ii). Colour v3 with the

appropriate one of c or d. Finally colour x (it is colourable since v3

has a colour not in L(x) \ {ψ(v2), ψ(v1)}).

Now we consider colourings of P whose restriction to v1vk is a part

of a bad colouring of yv1vk for W2. Since there is only one colouring

of yv1vk bad for W2, any two such colourings of P differ only at v2.

By what we have just proved, and since ϕ is a bad colouring of P by

assumption, the restriction of ϕ to v1vk is a part of a bad colouring

of yv1vk for W2.

Let ψ be a colouring such that ϕ(v1) = ψ(v1) and ϕ(vk) = ψ(vk)

but ϕ(v2) 6= ψ(v2). We show that ψ is a good colouring. Again let
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L(x) \ {ψ(v2), ψ(v1)} = {a, b} and L(y) \ {a, b, ψ(v1)} = {c, d}, and

let L(x) \ {ϕ(v2), ϕ(v1)} = {e, f} and L(y) \ {e, f, ϕ(v1)} = {g, h}.

If both cψ(v1)ψ(vk) and dψ(v1)ψ(vk) are good colourings of yv1vk

for W2, then ψ is a good colouring of P (and similarly for ϕ, g and

h). From this and the uniqueness of the bad colouring of yv1vk

for W2, we may assume without loss of generality that c = g and

cψ(v1)ψ(vk) (which is the same as cϕ(v1)ϕ(vk)) is the unique bad

colouring of yv1vk for W2.

Then dψ(v1)ψ(vk) and hϕ(v1)ϕ(vk) are good colourings of yv1vk for

W2. When P is coloured ϕ (ψ), colour y with h (d) then colour W2.

If in case (i) the colour v4 receives does not allow v3 to be coloured,

or if in case (ii), |L(v3) \ {ψ(v2), c}| = 1 or |L(v3) \ {ψ(v2), d}| = 1,

then {h, ϕ(v2)} ⊆ L(v3) ({d, ψ(v2)} ⊆ L(v3)).

Since ψ(v2) 6= ϕ(v2) and |L(v3)| = 3, h = d or h = ψ(v2) or

d = ϕ(v2). Suppose first that h = d. Since c = g, {c, d} = {g, h},
i.e., L(y) \ {a, b, ψ(v1)} = L(y) \ {e, f, ϕ(v1)}. Since ψ(v1) = ϕ(v1),

{a, b} = {e, f}, i.e., L(x) \ {ψ(v2), ψ(v1)} = L(x) \ {ϕ(v2), ϕ(v1)}.
This gives a contradiction since ψ(v2), ψ(v1), ϕ(v2) and ϕ(v1) are

all in L(x) and ψ(v1) = ϕ(v1) but ψ(v2) 6= ϕ(v2). If any of ψ(v2) or

ψ(v1) is not in L(x), then with P coloured ψ we can colour y by a

or b, colour W2, colour W3 then colour x. Similarly for ϕ(v2) and

ϕ(v1) with P coloured ϕ.

If h = ψ(v2) (or if d = ϕ(v2)), then with P coloured ψ (or ϕ), colour

y by h (d) so that two of the neighbours of v3 and x are coloured

the same.

(2) r = 3 and W3 is not a triangle and the bad colourings of v3yvs for

W3 are of type 2.

In this case, colour v3 by a colour different from its unique colour

involved in the two bad colourings of v3yvs for W3, colour x, then

of the remaining two colours for y choose one that avoids the bad
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colouring of yv1vk for W2, colour W2 and finally colour W3.

(3) r 6= 3.

Let a and b be the two colours in L(x) \ {ϕ(v2), ϕ(v1)}. Let P be

coloured with ϕ. We show first that the set of good colourings of vrx

for W ′
1 (the broken wheel bounded by xv2 · · · vrx) either contains ab

and ba, or there is c ∈ L(vr) such that the set of good colourings

contains ca and cb. Note that we know from Lemma 3.2.11 that

with v2 coloured ϕ(v2), the bad colourings of vrx for W ′
1 have one

of those two sets of forms.

If the bad colourings of vrx for W ′
1 are ab and ba (or they are two

colourings of this form with two other colours), let c be any colour

in L(vr) \ {a, b} (or in L(vr) delete the two colours). Then ca and

cb are good colourings of vrx for W ′
1. If the bad colourings of vrx

for W ′
1 are da and db then either L(vr) \ {d} = {a, b} or there is

a colour c in L(vr) \ {d, a, b}. In the first case ab and ba are good

colourings, and in the second case ca and cb are good colourings.

Now we consider each of those two cases of the good colourings of

vrx for W ′
1. If ab and ba are good colourings, let e and f be the

two colours in L(y) \ {a, b, ϕ(v1)}. Colour y by the colour of e and

f that avoids the bad colourings of yv1vk for W2 then colour W2.

Depending on the colour vs (vr+1 in case W3 is a triangle) receives,

colour vrx either ab or ba. By Lemma 3.2.11, with fixed colours of

y and vs it is at most one colour of vr that makes the colouring of

vryvs bad for W3. If W3 is a triangle, one of a or b will be different

from the colour of vr+1 - the colour of y, which is either e or f is

already different from both a and b. Now colour W ′
1.

Suppose now that ca and cb are good colourings of vrx for W ′
1. Then

(L(y) \ {c, a, ϕ(v1)}) ∪ (L(y) \ {c, b, ϕ(v1)}) contains at least three

colours (since each set in the union contains at least two elements

and the two sets are different).

If vr is coloured c, colouring y with each of those three colours then
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colouring the vertices from vr+1 to vs in ascending order of indices

gives three different colours at vs (corresponding to the three colours

at y). One of the three colours vs can receive from this procedure

avoids all the bad colourings of vsz (the colourings that with vk

coloured ϕ(vk) make the colouring of vszvk unextendable to the

broken wheel W ′
2 bounded by zvs · · · vkz).

Now colour vr with c then y with the colour that makes vs receive

the right colour to colour W ′
2 after colouring the broken wheel W3

in ascending order of indices. Also colour W3 using this procedure,

colour W ′
2, colour x with a or b (whichever of them is available, since

the colour y is coloured with may be a or b), and finally colour W ′
1.

We also have the following lemma about choosing an appropriate

colouring from two confederacies for two paths of length one, at distance

one, in the outer walk of a wheel with centre a 4-list vertex. We want the

colouring of the two paths (which is a colouring of a path of length three)

to be extendable to the wheel.

Lemma 4.2.6. Let G be a wheel with centre x, and let uu′v′v be a path

of length three in ∂G. Let L be a list assignment of G such that:

• for v ∈ V (∂G), |L(v)| ≥ 3; and

• |L(x)| ≥ 4.

Let Cu and Cv be confederacies for uu′ and vv′ respectively. Then, there

are colourings ϕu ∈ Cu and ϕv ∈ Cv such that:

• ϕu∪ϕv is a proper colouring of the subgraph induced by {u, u′, v′, v};
and

• ϕu ∪ ϕv is extendable to G.

Proof. For a proper colouring ϕu∪ϕv of the subgraph induced by {u, u′, v′, v}
to be extendable to G, the following two conditions should be satisfied:
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• L(x) contains at least one colour not in {ϕv(v), ϕv(v
′), ϕu(u), ϕu(u′)};

and

• there is at least one such colour c such that the colouring ϕu(u)cϕv(v)

of uxv is extendable to the broken wheel W := G− {u′, v′}.

Suppose that there is a colouring ϕv ∈ Cv such that, for every colouring

ϕu ∈ Cu, either L(x) = {ϕu(u), ϕu(u′), ϕv(v), ϕv(v
′)}, or ϕu(u′) = ϕv(v

′).

When we write cd ∈ Cv, we mean that c is the colour of v′ and d is

the colour of v, similarly for Cu.

Suppose that L(x) = {a, b, c, d}, cd ∈ Cv, and Cu consists of a subset

of {ab, ba} and colourings that give u′ the colour c (or we say start with

c). This means that there are at least two colourings starting with c in

Cu.

Claim 4.2.7. Cv does not contain dc.

Proof. Suppose for a contradiction that Cv contains dc. If u and v are

adjacent, then the colouring dc for v′v and one of the two colourings

starting with c in Cu make a proper colouring of the cycle uu′v′vu. This

colouring is extendable to x since u′ and v are both coloured c.

Thus, u and v are not adjacent. If the colouring dc for v′v with the two

colourings starting with c in Cu force uxv to be coloured by a colouring

not extendable to the broken wheel W , then the two colourings starting

with c in Cu are ca and cb, and the bad colourings of uxv for W are the

permutations of {a, b, c}.
Now we prove that any colouring in Cv either starts with c or d. Sup-

pose there is a colouring ϕ in Cv that starts with e, where e /∈ {c, d}. If

ϕ(v) is not in {a, b, c}, then we colour v′v with ϕ. This guarantees that

all the bad colourings of uxv are avoided. Then, we colour u′u by any of

the colourings in Cu that start with c, then extend the colouring of uu′v′v

to x and then to W .

Thus, ϕ(v) is in {a, b, c}. If ϕ = ec, then when we colour v′v with ec

and u′u with any of ca or cb, we can colour x with d and hence have the

bad colourings of uxv avoided. If ϕ = ea (eb), then we colour v′v with
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ϕ and colour u′u with ca (repectively cb). This guarantees that the bad

colourings of uxv are avoided.

Thus Cv is the union of {cd, dc} and:

(i) a dictatorship with dictator v′ in which the colour of v′ is c,

(ii) a dictatorship with dictator v′ in which the colour of v′ is d, or

(iii) a colouring cf with f 6= d, and a colouring dg with g 6= c.

In the cases (i) and (iii), there is a colouring cf in Cv such that f 6= d.

We colour v′v with cf and u′u with ab, then we colour x with d. This

avoids all the bad colourings of uxv. In case (ii), there is a colouring dg in

Cv such that g 6= c. If g /∈ {a, b}, then colouring v′v with dg avoids all the

bad colourings of uxv. If g = a (g = b), colour u′u with ca (repectively

cb).

Now consider a colouring ϕ ∈ Cv that starts with a colour e 6= c. We

have the following three cases.

Case 1. ϕ(v) = c.

In this case, by Claim 4.2.7, e 6= d. Since Cv contains cd but not dc,

and Cv is a confederacy (a union of two governments), Cv either contains

a colouring fd with f 6= c (this is Case 2) or a colouring cf with f 6= d.

Thus, we assume Cv contains a colouring cf with f 6= d.

Colour v′v with ϕ and u′u with ab. If the union of those two colourings

is not extendable to G, then we have one of the follwing two cases.

Subcase 1.1. e = a.

If each of the two colourings starting with c in Cu with the colouring

ϕ = ac for v′v does not extend to G, then those two colourings are cb and

cd and the bad colourings of uxv are the permutations of {b, d, c}. In this

case we colour v′v with cf , and u′u with ab.
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Subcase 1.2. bdc is a colouring of uxv unextendable to W .

In this case we also colour v′v with cf , and u′u with ab.

Case 2. ϕ(v) = d.

Recall that ϕ(v′) = e 6= c. If colouring v′v with ed and u′u with

ab does not extend to G, then the bad colourings of uxv are either the

permutations of {b, c, d} or two colourings, including bcd, that give u and

v the colours b and d respectively.

Suppose that e 6= b. At least one of the two colourings in Cu that start

with c ends with a colour not in {c, b}. Let ψ be such a colouring. Colour

u′u with ψ and v′v with ϕ, and then colour x with b. This avoids the bad

colourings of uxv.

Thus, e = b. That is, the two colourings we know in Cv are cd and bd.

If one of the colourings in Cu that start with c ends with a colour not in

{a, b}, then giving this colouring to u′u and ϕ = bd to v′v avoids the bad

colourings of uxv and allows x to be coloured a.

Thus, the two colourings in Cu that start with c are ca and cb. If

colouring u′u with cb and v′v with bd does not avoid the bad colourings

of uxv, then the bad colourings of uxv are bcd and bad.

Since Cv is a confederacy, it is not a government, and so not a dicta-

torship with dictator v. Thus, there is a colouring in Cv that ends with

a colour different from d. Let ϕ′ be such a colouring. If ϕ′(v′) 6= a, then

colour u′u with ab and v′v with ϕ′. Since ϕ′(v) 6= d, the bad colourings of

uxv are avoided, and we just need to show that there is a colour available

for x. If ϕ′(v′) 6= d as well, then x can be coloured d. If ϕ′(v′) = d, then

ϕ′(v) 6= c by Claim 4.2.7, and so we can colour x by c.

Thus, ϕ′(v′) = a. Colour u′u with ca and v′v with ϕ′. Since ϕ′(v) 6= d,

x can be coloured with d.

Case 3. ϕ(v) /∈ {c, d}.
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Let f denote ϕ(v). Thus, ϕ = ef . If colouring v′v with ϕ and u′u

with ab is not extendable, then bcf is a bad colouring of uxv. Thus, with

v coloured f , the bad colourings of ux are either {bc, cb} or {bc, bg} for

g 6= c.

At least one of the two colourings in Cu that start with c ends with

a colour different from b. Let ψ be such a colouring. Colour u′u with ψ

and v′v with ϕ. This avoids the bad colourings of uxv but may not be

extendable to x. If ϕ ∪ ψ is not extendable to x, then either ψ = ca and

ϕ = db (ϕ 6= bd since f 6= d), or ψ = cd and ϕ = ab or ba. We consider

only one of those three possibilities, the other ones can be proved using

similar arguments.

If there is in Cu a colouring that starts with c and ends with a colour

not in {a, b}, then the union of this colouring for u′u and db for v′v extends

to G. Thus, the two colourings in Cu that start with c are ca and cb.

If the colouring cb for u′u, as ab, union the colouring db for v′v does

not extend to G, then bab as bcb are bad colourings for uxv. We may

assume the harder case without loss of generality, that is bab and bcb are

not the only bad colourings of uxv, but also aba, aca, cbc, and cac.

Note that the colourings in Cv that we know are cd and db, and they

are in two different governments. If Cv contains a colouring that starts

with c and ends with a colour not in {d, b}, then colouring v′v with that

colouring and u′u with ab extends to G.

Thus, the second colouring in the government containing cd in Cv is

cb. If Cv contains a colouring that starts with d different from db, then

colouring v′v by that colouring and u′u with ab extends to G since dc is

not in Cv by Claim 4.2.7.

If Cv contains a colouring that ends with b different from db and cb,

then colouring v′v with that colouring and u′u with ca extends to G. Also

from Case 2 we know that Cv does not contain a colouring that ends with

d different from cd, in particular it does not contain bd. Thus, cb is the

only colouring in the government containing db in Cv.
Now we know that Cu contains {ab, cb, ca}, and Cv = {cd, cb, db}. We

colour u′u with ab and v′v with cb. Then, x can be coloured d, and so
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the bad colourings of uxv are avoided.

4.3 An Extension of a Theorem of Thomassen

In this section we state and prove our extension of Theorem 3.2.4 of

Thomassen.

Theorem 4.3.1. Let (G,P, L, x) be a canvas, where P is a path of length

at most two. Given a fixed L-colouring ϕ of P , then G has an L-colouring

extending ϕ unless:

(a) P has length one and G contains a 3-restricted subcanvas that is a

wheel with centre x; or

(b) P has length two and G contains:

(i) a 4-restricted subcanvas that is a wheel with centre x;

(ii) a 3-restricted subcanvas that is a wheel of wheels containing x

(either as its centre or the centre of one of the smaller wheel

sections);

(iii) a 3-restricted semi-subcanvas that is a broken wheel with major

vertex x and principal path whose end-vertices are the end-

vertices of P ; or

(iv) a 3-restricted subcanvas that is a generalized wheel that does

not contain x as an inner vertex.

Proof. This is an adaptation of Thomassen’s proof of 3.2.4. Let G be a

minimum conterexample. We assume without loss of generality that G is

a near-triangulation.

Claim 4.3.2. G is 2-connected.

Proof. If G has a cut vertex, we colour the block containing x by minimal-

ity then colour the rest of the graph either by Theorem 3.2.6 or Theorem

3.2.4.
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Now let C := v1v2 · · · vkv1 be the outer cycle of G and suppose that

P = v1, P = v2v1 or P = v2v1vk in case P is of length zero, one or two

respectively.

Claim 4.3.3. |C| ≥ 6, there are no separating triangles, and if there is a

separating 4-cycle then its interior consists of x only (in particular there

is no separating 4-cycle with all its interior vertices having 5-lists).

Proof. (1) |C| ≥ 4 and there are no separating triangles.

Assume for a contradiction that |C| = 3 or that there is a separat-

ing 3-cycle. Let C ′ be a 3-cycle with nonempty interior such that

the subgraph induced by C ′ and its interior does not contain a sep-

arating 3-cycle. Note that C ′ is C in case G contains no separating

3-cycles. Colour C ′ and its exterior by minimality, and let G′ be

the subgraph of G induced by the vertices in the interior of C ′.

Let L′ be the list assignment of G′ such that, for every v ∈ V (G′),

L′(v) is obtained from L(v) by deleting the colours of the neighbours

of v in C ′. By minimality, this theorem, and so also Proposition

2.2.4, is true for G′. Thus, G′ is L′ colourable by Lemma 2.2.5.

(2) |C| ≥ 5 and if there is a separating 4-cycle then its interior consists

of x only, and x is adjacent to all the four vertices of the cycle.

Assume that |C| = 4 or that there is a separating 4-cycle. Let C ′ be

a 4-cycle with nonempty interior such that the subgraph induced by

C ′ and its interior does not contain a separating 4-cycle. Note that

C ′ is C in case G contains no separating 4-cycles. Colour C ′ and

its exterior by minimality, and let G′ be the subgraph of G induced

by the vertices in the interior of C ′.

Let L′ be the list assignment of G′ such that, for every v ∈ V (G′),

L′(v) is obtained from L(v) by deleting the colours of the neighbours

of v in C ′. By minimality, this theorem, and so also Proposition

2.2.4, is true for G′. Thus, if x is not adjacent to all the vertices of

C ′, G′ is L′ colourable by Lemma 2.2.6.
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(3) |C| ≥ 6.

Suppose that |C| = 5. There is no 5-list vertex that is adjacent to

all the vertices of C since there are no separating triangles and we

assumed that x is in the interior of C.

The 4-list vertex x is not adjacent to all the vertices of C since this

is one of the obstructions in case P has length at least 1 and in

case P has length is a vertex or is empty this wheel with centre x

is colourable.

We saw in the preceding paragraph that x is not adjacent to all

5-vertices of C. Since G is a near-triangulation and there are no

separating 4-cycles with only interior 5-lists, x is not adjacent to

four vertices of C. Such a wheel with centre x is an obstruction in

case P has length at least one, but in case P is empty or is a vertex,

G is colourable (G consists of a vertex of degree two joined to a

wheel with centre x whose outer cycle is of length four). Therefore,

if there is a vertex adjacent to four vertices of C, it is not x.

Suppose there is a vertex v in the interior of C adjacent to four ver-

tices of C; there is at most one such vertex. This divides the interior

of C into three triangles and one 4-cycle. Let C ′ be the 4-cycle. Be-

cause there are no separating triangles, all the vertices other than

v in the interior of C are in the interior of C ′; in particular, x is in

the interior of C ′.

By (2), x is the only vertex in the interior of C ′. By (1), and since

G is a near triangulation, x is adjacent to all the vertices of C ′.

Thus, G is a double-centred wheel with centres v and x. This yields

the contradiction that G is either L-colourable or an obstruction,

depending on whether P has length less than two or equal to two.

Thus, we may assume that every interior vertex of C is adjacent to

at most three vertices of C. If there are three vertices in the interior

of C such that each one of them has three neighbours in C, then

there is a separating 4-cycle with interior consisiting of 5-lists only.
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Thus, there can be at most two vertices in the interior of C that are

adjacent to three vertices of C. If there is exactly one vertex in the

interior of C that is adjacent to three vertices of C we can colour the

interior of C by colouring the block containing that vertex first.

If there are two vertices in the interior of C that are adjacent to

three vertices of C, we colour C first. Then we may need to colour

a block in which all the interior vertices have 5-lists, there are three

2-lists on its outer walk and all the other vertices on the outer walk

have 4-lists, or a block that contains x in its interior, has two outer

2-lists, one outer 3-list and all the other lists on the outer walk are

4-lists.

Both types of block are colourable by deleting (the appropriate) one

of the outer 2-lists or 3-list. Then, whether the deleted vertex is on a

chord of the block or not, the resulting smaller blocks are colourable.

We may need to delete one vertex from one of the smaller blocks to

colour it by minimality or Theorems 3.2.6, 3.2.7, or 3.2.8.

Therefore every vertex in the interior of C is adjacent to at most

two vertices of C and so the interior of C is colourable by colouring

the block containing x first.

Claim 4.3.4. C has no chords.

Proof. (1) If there is a chord that has x and P on one side, colour that

side first (and if P is empty, colour the side containing x first), then

colour the other side by Theorem 3.2.6.

(2) If P consists of a vertex and there is a chord that has P and x on

different sides, choose the closest such chord to x. Colour the side

containing P first by Theorem 3.2.6. Since G is a counterexample,

this colouring is unextendable to the side containing x, and so by

minimality, this side contains a 3-restricted wheel subcanvas with

centre x. This subcanvas contains the chord since there are no

closer chords to x that separate it from P , and then, in fact, this
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L(v1) = {2}, L(v2) = {3}, L(v3) = {1, 2, 3}, L(v4) = {1, 2, 3},
L(v5) = {1, 2, 3, 4}, L(v6) = {2, 3, 4}, L(v7) = {2, 3, 5}, L(v8) = {2, 3, 5},

L(v9) = {1, 2, 3}, L(v10) = {1} and L(x) = {1, 2, 3, 4}.

Figure 4.10: uncolourable even though one of the vertices on the outer
cycle has a list of size greater than three; |L(v4)| = 4.

subcanvas is all of the side containing x since by (1) there is no

chord that has x and P on the same side. By Lemma 4.2.1, there

is at most one colouring of the chord that is unextendable to the

side containing x. By Lemma 3.3.9 there is a colouring of the side

containing P that avoids the unique unextendable colouring to the

side containing x.

(3) If P has length one and there is a chord that has P and x on

different sides, also choose such a chord that is closest to x. As

in (2) if we colour the side containing P by Theorem 3.2.6, then,

since this is a counterexample, this colouring is not extendable to

the other side. Thus, the side containing x is a wheel with centre

x. If we show that the end-vertices of the chord both have lists of

size at most three then this wheel is a 3-restricted subcanvas and

so we have a contradiction (since now, as P has length one, this is

an obstruction).

We know by Lemma 4.2.1 that it is at most one colouring of the

chord that is unextendable to the wheel with centre x. If one end-

vertex of the chord has more than three colours, we delete the colour
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involved in the unique unextendable colouring from its list. After

deleting that colour, the side containing P is still colourable by The-

orem 3.2.6 and that colouring is extendable to the side containing

x since we deleted the colour involved in its unique unextendable

colouring.

(4) If P has length two and there is a chord that has P and x on different

sides, we can colour the side containing P by Theorem 3.2.4 (it does

not contain an obstruction since the obstructions of Theorem 3.2.4

are a subset of the obstructions of this theorem). The rest of the

argument is the same as that in (3) except that now we need to

argue that the end-vertices of the chord both have lists of size at

most four.

If one end-vertex of the chord has a list of size greater than four,

we delete from its list the unique colour involved in the colouring

of the chord unextendable to the side containing x. This deletion

does not introduce any new 3-lists, and since the all the possible

obstructions to colouring the side containing P are 3-restricted by

Theorem 3.2.4, it is still colourable. This colouring is extendable to

the side containing x, a contradiction. Thus the wheel with centre

x is a 4-restricted subcanvas, a contradiction.

(5) If P has length two and there is a chord that has v1, the middle

vertex of P , as one end-vertex, there are two cases.

Case 1. There are such chords on both sides of x.

Choose the closest such chords to x on both sides. Now the graph is

divided into three parts. The outer parts are colourable by Theorem

3.2.6, but this colouring is not extendable to the middle part since

this is a counterexample. From this, and by our choice of the chords,

by (1) and (4) of this claim, and by (2) of Claim 4.3.3, the middle

part is either a wheel with centre x or a wheel of wheels containing

x.
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Let vi and vj be the end-vertices of the two chords different from

v1. Note that vi and vj are not adjacent in C since there are no

separating triangles.

In case the middle subgraph is a wheel with centre x, in order to

have a contradiction, we need to show that neither of the two corner

vertices, vi and vj, between it and the other two parts has a list of

size bigger than four. In case the middle part is a wheel of wheels

that is not a wheel, we need to show that each corner vertex has a

list of size at most three.

Let Aj denote the part adjacent to v1vj and Ai denote the part

adjacent to v1vi. Assume without loss of generality that i < j and

that vj has a list of size greater than four if the middle part is

a wheel, and greater than three if it is a wheel of wheels that is

not a wheel. Then, if j = k − 1, delete from L(vj) the colour of

vk. If j 6= k − 1 and Aj is a broken wheel, then Aj − vj is also a

broken wheel. Since G does not contain a 3-restricted broken wheel

subcanvas, at least one of the vertices vl with j < l < k has a list

of size greater than three, and so all the colours of vj are good for

Aj in this case. If Aj is not a broken wheel delete from L(vj) the

colour involved in the unique unextendable colouring of vjv1vk to

Aj.

Colour vi (the other corner vertex) by a colour different from that

involved in the unique unextendable colouring of Ai if Ai is not a

broken wheel. If i = 3, colour vi by a colour different from that

of v2. If i 6= 3 and Ai is a broken wheel, then at least one of the

vertices vl with 2 < l < i has a list of size greater than three. Thus,

we can colour vi by any colour in this case and have the colouring

of viv1v2 extendable to Ai.

Now we can colour the middle part. If it is a wheel with centre x we

colour it by colouring x then colouring the vertices from vi toward

vj (vj is colourable since it still has at least four colours and it has

degree 3 in the middle part).
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If it is a wheel of wheels, since we assumed that |L(vj)| > 3 and have

deleted at most one colour from it, it still contains a colour differ-

ent from that of v1 and the colour involved in the unique colouring,

given by Lemmas 4.2.4 and 4.2.5, of vjv1vi unextendable to the

wheel of wheels. We colour vj with this colour then colour the

wheel of wheels. Note that there are no separating 4-cycles with

interiors consisting of 5-lists only and no separating triangles, and

so the conditions of the lemmas are satisfied.

Case 2. There are chords only on one side of x.

Also choose the closest such chord to x. The side not containing x is

colourable but the colouring is not extendable to the side containing

x, and so the side containing x is either a wheel with centre x or a

wheel of wheels. In case it is a wheel, then, as before, the corner

vertex cannot have more than four colours. In case it is a wheel of

wheels, then, as before, the corner vertex cannot have more than

three colours. Thus we have a contradiction in both cases.

Claim 4.3.5. Let u be an inner vertex that is joined to two vertices v and

w on C such that P is contained in one of the two vw-paths in C. Let H

be the subgraph bounded by vuw and the vw-path in C not containing P .

Then H is either a broken wheel or a wheel with centre x.

Proof. Case 1. u = x.

Assume H is not a broken wheel. Suppose we have chosen the clos-

est two such vertices (v and w) to P . The side of vxw containing P

is colourable since it has a list of size greater than three on its outer

boundary; L(x).

Since this is a counter-example, this colouring is not extendable to H.

Then, by Theorem 3.2.4 and Claim 4.3.4, H is a generalized wheel with

principal path vxw and with all outer boundary vertices other than v and

w having lists of size exactly three. Delete from the list of x the colour
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of the unique unextendable colouring of vxw to H. If the side of vxw

containing P is colourable after deleting that colour, we colour it then

colour H, a contradiction.

If the side of vxw containing P is not colourable after deleting that

colour, this means it is a generalized wheel with principal path P and all

its outer lists other than those of P are of size three. Since this subgraph

(the side of vxw containing P ) cannot contain any chords other than v1x,

it is either a wheel or a union of two wheels that intersect only in v1x.

Therefore, the union of the two sides of vxw, that is G, is a wheel of

wheels with all outer lists other than those of P of size three, contradict-

ing the hypothesis of the theorem.

Case 2. |L(u)| = 5 and x is on the same side of vux as P .

Assume that H is not a broken wheel and again suppose that v and w

are chosen closest to P . The side containing P and x is colourable since

it has a list of size greater than three on its outer boundary; |L(u)| (the

obstruction to colouring this side cannot be a wheel with centre x because

of Case 1). We can delete from the list of u the colour of the unique unex-

tendable colouring to H. After deleting that colour, L(u) still has at least

four colours and so the side of vuw containing P and x is still colourable.

Case 3. u has a 5-list and x and P are on different sides of vuw. In this

case assume that v and w, contrary to the previous two cases, are chosen

furthest from P .

We can colour the side containing P , but this colouring is not extend-

able to the other side. Thus the side containing x is (not just contains,

because of the choice “furthest”) either a wheel with centre x (in that

case we are done) or is a wheel of wheels. If this side contains a broken

wheel semi-subcanvas with principal path uxw then, since this is a near-

triangulation and there are no chords (that is v and w are not adjacent

on a chord), x is adjacent to u and this side is again a wheel with centre
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x.

If it is a wheel of wheels, it has only one unextendable colouring and we

can delete its colour from the list of u and still have the side containing P

colourable since u has then a list of size at least four. All the obstructions

to colouring that side should have lists of size exactly three on their outer

boundary and they contain u since there are no chords in G.

Finally, after colouring the side of vuw containing P , we colour the

side containing x (which is colourable now since the colour of u involved in

the unique bad colouring of vuw was deleted from L(u) before colouring

the side containing P ).

Claim 4.3.6. If P has length at least one, then no interior neighbour is

adjacent to two vertices that are the ends of a path Q in C of length at

most two such that P ⊆ Q.

Proof. Suppose that there is such an inner vertex u. If u = x, then by

Claim 4.3.5, part (2) of Claim 4.3.3 (no separating 4-cycles with interior

all 5-lists) and Claim 4.3.4 (no chords), we have that G is a wheel with

centre x. Each outer vertex cannot have a list of size greater than 3,

since otherwise we can colour the wheel. This is one of the obstructions,

a contradiction.

Thus |L(u)| = 5. Suppose first that P and x are on different sides of

v2uvk (or v2uv1). Then by Claim 4.3.5, x is adjacent to v2 and vk, a con-

tradiction since there are no separating 4-cycles with interiors consisting

of 5-lists only and no separating triangles at all.

Now suppose that P and x are on the same side of v2, u, vk. The

subgraph W bounded by uv2 · · · vku is a broken wheel by Claim 4.3.5.

Colour W ; the cycle v1v2uvkv1 or v1v2uv1 is now coloured. By (1) and (2)

in Claim 4.3.3, the interior of v1v2uvkv1 or v1v2uv1 is colourable unless x

is adjacent to all the vertices of this cycle.

Now if the interior of this cycle is colourable, we have a colouring of G

and so have a contradiction. If it is not colourable, G is a double-centred

wheel (a union of a wheel with centre x and a broken wheel with major

vertex u). This is also a contradiction because every uncoloured vertex
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on C has a list of size exactly three since otherwise we can colour the

wheel with centre x first and extend any colouring that v2uvk receives to

the broken wheel W .

Claim 4.3.7. We may assume that P has length at least one.

Proof. To prove this we need to show that the graph does not contain

a wheel subcanvas with centre x even if P has length less than one (i.e.

empty or consisting of exactly one vertex). Then we can colour an edge

or a neighbour of the precoloured vertex to turn our counterexample into

one with a precoloured path of length one.

If the graph contains a wheel subcanvas with centre x, it must be all of

the graph since we proved before that there are no chords. By Lemma

4.2.1, a wheel with centre a 4-list without precoloured vertices or with

only one precoloured vertex is colourable.

Claim 4.3.8. x is not adjacent to both v3 and vk−1.

Proof. If both v3 and vk−1 are adjacent to x, then let G′ be the graph

bounded by the cycle C ′ := v1v2v3xvk−1vkv1, and let W be the broken

wheel bounded by xv3 · · · vk−1x (we know that W is a broken wheel by

Claim 4.3.5). Note that the interior of C ′ consists of 5-lists only.

Colour W first. Then colour the interior of the now-coloured C ′ as

follows. If every vertex in the interior of C ′ is adjacent to at most two

vertices in C ′, then the result follows from Theorem 3.2.6.

If every vertex in the interior of C ′ is adjacent to at most three vertices

of C ′, then there are at most three vertices each adjacent to three vertices

of C ′. If there are three such vertices, then they have 2-lists after deleting

the colours of their neighbours in C ′, and every other vertex in the interior

of C ′ has a list of size at least four. In this case, any block in the interior of

C ′ can be coloured as follows. Delete one of the 2-lists, then the resulting

graph is colourable either by Theorem 3.2.7 or Theorem 3.2.8.

If there are two such vertices, then all the other interior vertices of C ′,

except possibly one, are adjacent to at most one vertex of C ′. Thus, the

interior is colourable, block after block, by Theorem 3.2.7.
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Therefore, we may assume that there are vertices in the interior of

C ′ adjacent to more than three vertices of C ′. There can be at most

two vertices adjacent to four vertices of C ′. Suppose there are two such

vertices y and z. Then all the other interior vertices of C ′ are adjacent to

at most one vertex of C ′.

The vertices y and z may be the only vertices in the interior of C ′ and

they may be adjacent. Otherwise, the interior of C ′ is colourable, block

after block, by Theorem 3.2.7.

In case the interior of C ′ consists of y and z, we colour G as follows.

Note first that the interior of G consists of the three vertices x, y and z.

The vertices x, y and z make a triangle, y is adjacent to v1, v2, v3, z is

adjacent to v1, vk, vk−1, and x is adjacent to v3, · · · , vk−1.
By Lemma 3.2.11, there is a set S of size 3 such that the colours

of v3, x, vk−1, that appear in colourings of v3xvk−1 unextendable to the

broken wheel bounded by xv3 · · · vk−1x, are all contained in S. Since

|L(x)| ≥ 4, there is a colour c in L(x) \ S.

If L(v3)\{ϕ(v2)} = {c, d}, L(vk−1)\{ϕ(vk)} = {c, d′} for some colours

d and d′, L(y) = {ϕ(v1), ϕ(v2), d, c, e}, and L(z) = {ϕ(v1), ϕ(vk−1), d
′, c, e}

for some colour e, then colour v3 by c, colour vk−1 by d′, and colour

x by any other colour f (f may equal e). This colouring of v3xvk−1

is extendable to the broken wheel bounded by xv3 · · · vk−1x and L(y) \
{ϕ(v1), ϕ(v2), c, f} 6= L(z) \ {ϕ(v1), ϕ(vk−1), d

′, f}. Thus, the colouring is

also extendable to y and z.

Otherwise, colour x by c, then colour v3 and vk−1 by colours such that

the remaining available colours in L(y) and L(z) are different.

If there is a vertex adjacent to four vertices of C ′ and a vertex adjacent

to three vertices of C ′, then there can be at most one vertex of the re-

maining vertices that is adjacent to two vertices of C ′ and so the interior

is colourable, block after block, by Theorem 3.2.7 in this case also.

Therefore, we may assume there are vertices adjacent to more than

four vertices of C ′. Now since there are no sparating 4-cycles with interior

5-lists only, the interior of the cycle consists of only one vertex that is

either adjacent to all the vertices of the cycle or to only five of them.
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Actually it is adjacent to all of them since this is a triangulation and any

chord of this cycle is either a chord of the outer cycle of G as well or is a

chord connecting x to a vertex of P and so creates a bigger broken wheel

containing W that we can consider to be W .

Note that the fact that any cycle, whose interior is not empty, inside

C ′ is a separating cycle follows from the fact that there are vertices outside

C ′ since |C| ≥ 6 by Claim 4.3.3 and only five vertices of C are in C ′.

Now we have a contradiction since one side of v3xvk−1 is a wheel (the

interior of C ′) and the other is a broken wheel, namely W , and so G is a

wheel of wheels. This wheel of wheels has all its outer boundary vertices,

except for those in P , having lists of size exactly three since first if a

vertex in V (C) − V (C ′) has a list of size greater than three. We can

colour G′ first then colour W .

Second, if one of v3 and vk−1 has a list of size greater than three, say

|L(v3)| > 3, then there is a colour in L(v3) that avoids all the colourings

of v3xvk−1 unextendable to W . Colour v3 with that colour, colour the

centre of G′, colour vk−1, colour x, then colour W .

We may assume without loss of generality that v3 is not adjacent to

x. Consider the subgraph G−v3, choose two colours from L(v3)\{ϕ(v2)}
and delete them from the lists of the neighbours of v3 other than v4,

let L′ be the resulting list assignment. By induction, if G − v3 does not

contain any of the obstructions, then it is L′-colourable, then its colouring

is extendable to G, a contradiction. Therefore G− v3 contains one of the

obstructions B.

Since B is not an obstruction of G, ∂B contains at least one vertex in

the interior of C that is a neighbour of v3. Since there are no separating 4-

cycles with interior consisting of neighbours of v3 only, and since C has no

chords, G−v3 is not a wheel. Therefore, G−v3 is either a double-centred

wheel or a wheel of wheels, or B is a proper subgraph of G− v3.
Let w1, · · · , wn be the neighbours of v3 in the interior of C from v2 to

v4. If G− v3 has a proper subgraph that is one of the obstructions, then

there are i and j, 1 ≤ i ≤ n and j ∈ {1, · · · , k} \ {2, 3, 4}, such that wi is

adjacent to vj. Let s be the maximum such j different from 1, if exists,
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and let s be 4 otherwise. Let r be the minimum i such that wi is adjacent

to vs. By Claim 4.3.5, the subgraph bounded by wrv3v4 · · · vswr is either

a broken wheel or a wheel with centre x. However, v3 is not adjacent to

x, so it is a broken wheel.

If the subgraph H bounded by v1v2w1 · · ·wrvs · · · vkv1 does not contain

one of the obstructions, then it is colourable by minimality. Then the

colouring of wrvs is extendable to the broken wheel bounded by wrv4 · · · vs
wr by Theorem 3.2.6. This gives a colouring of G− v3, extendable to G,

a contradiction.

Therefore, H contains one of the obstructions. By the choice of r

and s, and since C has no chords, this obstruction is either H itself, or

one of w1, · · · , wr is adjacent to v1, say wi is, and the subgraph bounded

by v1wi · · ·wrvs · · · vkv1 is one of the obstructions. But since there is no

separating 4-cycle with interior containing vertices other than x, i = 1,

and there are at most three neighbours of v3 in the interior of C. We

summarize this in the following claim.

Claim 4.3.9. There are at most three neighbours of v3 in the interior

of C, and if H is not an obstruction, then w1 is adjacent to v1 and the

subgraph BH of H bounded by v1w1 · · ·wrvs · · · vkv1 is an obstruction.

We consider every possible case for the obstruction BH contained in

H, a wheel (as a proper subgraph of G − v3), a generalized wheel, a

double-centred wheel, and a wheel of wheels, and we consider with every

case the two cases of whether or not w1 is adjacent to v1.

By the choice of r and s, by Claim 4.3.6 and Claim 4.3.5, if BH is a

generalized wheel, then it is a wheel.

In case BH is a wheel, since G is not a double-centred wheel, BH can

only be as shown in Figure 4.11, that is v3 has exactly two neighbours in

the interior of C, those two neighbours are w1 and w2, w1 is adjacent to

v1, w2 is adjacent to vi for some i > 4, and if t is the maximum such i,

then the subgraph bounded by v1w1w2vt · · · vkv1 is a wheel with centre x.

Case 1. BH is a wheel.
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Figure 4.11: The obstruction is a wheel.

In this case we colour G as follows (See Figure 4.11). We colour xvt

and v3w2 so as to avoid the colourings of vkxvt and v3w2vt unextendable

to the respective broken wheels. Colour vt by a colour that avoids the

bad colourings of xvt and then colour x.

If with the colour vt has now, there is only one colour of v3 that can

make the colouring of v3w2vt bad, colour v3 by a different colour, colour

w1 then colour w2. If the bad colourings of v3w2 with the now fixed colour

of vt are ab and ba, let c be a colour in L(w2) different from a, b, the colour

of x and the colour of wt. If c is not in L(w1) \ {ϕ(v1), ϕ(v2)}, colour w2

by c, colour v3, then colour w1.

If c ∈ L(w1) \ {ϕ(v1), ϕ(v2)}, then colour v3 by the same colour of

x in case the colour of x is one of a or b, and in case the colour of

x is neither a nor b, colour v3 by the colour of a and b that is not in

L(w1) \ {ϕ(v1), ϕ(v2)}. In case both a and b with the colour of x and c

are in L(w1) \ {ϕ(v1), ϕ(v2)}, this means that |L(w1)| ≥ 6 and there is no

problem in the first place, also in case v3 contains a colour different from

a and b there is no problem. Finally colour w2 by c.

Case 2. G− v3 is a double-centred wheel.
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Figure 4.12: G− v3 is a double-centred wheel.

In this case, G can only be as shown in Figure 4.12, that is v3 has

exactly one neighbour, w1, in the interior of C and x is adjacent to only

w1, v1 and v2 and the second centre, y. We colour G as follows. After

choosing two colours in L(v3) and deleting them from the lists of the

neighbours of v3 in the interior of C, we colour yw1 such that the colouring

of vkyw1 is extendable to the broken wheel bounded by vkyw1v4 · · · vk.

If only one colour of w1 is involved in bad colourings of w1yvk, colour

w1 by a different colour, colour x then colour y. So suppose that the bad

colourings of yw1 are ab and ba. If there is a colour in L(w1) different from

a, b, ϕ(v2) and the two colours kept for v3, colour w1 with that colour,

colour x then colour y. Therefore, we may assume that the only colours

in L(w1) different from ϕ(v2) and the two colours kept for v3 are a and

b.

Since |L(y)| ≥ 5, there is a colour c different from a and b in L(y) \
{ϕ(v1), ϕ(vk)}. Since |L(x)| = 4, either one of a or b is not in L(x), or

one of ϕ(v1) and ϕ(v2) is a or b. In either case, there is a colour of a and

b that if we colour w1 with, x still has two available colours. Colour w1

by the appropriate colour of a and b, colour y by c then colour x.

Case 3. BH is a double-centred wheel.
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Figure 4.13: The obstruction contained in H is a double-centred wheel.
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Figure 4.14: The obstruction contained in H is a double-centred wheel.

Let y be the centre different from x. We consider first the case when

v1 and w1 are adjacent to y, and x is the centre of a wheel bounded

by the cycle v1v2w1yv1 (See Figure 4.13). As in Case 2, we can colour

w1yvk such that its colouring is extendable to the broken wheel bounded

by vkyw1vs · · · vky or vkyw1w2vs · · · vky. After the double-centred wheel

is coloured, we can by Theorem 3.2.6 extend the colouring of w1vs to the

broken wheel bounded by w1v4 · · · vsw1, or extend the colouring of w2vs

to the broken wheel bounded by w2v4 · · · vsw2. Finally colour v3.

The remaining possibilities when the obstruction is a double-centred

wheel are shown in Figures 4.14, 4.15 and 4.16. In each of those possibil-

ities we consider the cases of whether or not the wheel centred at x has
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Figure 4.15: The obstruction contained in H is a double-centred wheel.
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Figure 4.16: The obstruction contained in H is a double-centred wheel.
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its outer cycle of length four.

Let t be the unique index different from 1 such that both x and y

are adjacent to vt (t = 10 in Figures 4.14 and 4.15). The cases shown in

Figure 4.14 are when the other vertex to which both x and y are adjacent

is w1, and in Figure 4.15 this vertex is v1.

In the case shown in the left drawing of Figure 4.14, we colour G

as follows. If one of the colours in L(vt) that avoid the bad colourings

of vkxvt (for the broken wheel bounded by vkxvt · · · vk) is not in L(x) \
{ϕ(v1), ϕ(v2)}, we colour vt by such a colour, say c. We now colour vs by

a colour that avoids the bad colourings of vtyvs (with the now fixed colour

of vt), and if possible we choose it so as to also avoid the bad colourings

of vsw1v2.

If it is not possible to choose the colour of vs so as to avoid the bad

colourings of vsw1v2, then the bad colourings of vsw1 are of the form ab

and ba. In any case by fixing the colour of vs, at least one of the two

colours left in the list of L(w1) makes the colouring of vsw1v2 good.

Colour w1 with such a colour, colour x (which is colourable even

though four of its neighbours are already coloured because vt is coloured

c which was chosen to be outside L(x) \ {ϕ(v1), ϕ(v2)}), then colour y

and extend the colourings to the respective broken wheels. If there is no

colour as c, then the good colourings of vtx are of the form de and ed.

If one of e and d, say d, is such that colouring vt with it avoids the bad

colourings of vtyvs, then colour vt with d, colour x with e, colour vs by

a colour that avoids the bad colourings of vsw1v2, colour w1, then colour

y.

Therefore, we can assume that both d and e are colours of vt involved

in bad colourings of vtyvs. By Lemma 3.2.11, there is at most one more

colour (different from e and d) that appears in a bad colouring of vtyvs

(either as a colour of vt, y or vs), and so, since |L(y)| ≥ 5, there are at

least two colours in L(y) \ {d, e} that avoid the bad colourings of vtyvs.

One of those two colours, say g, is different from the colour, say f , in

L(w1) \ {ϕ(v1), ϕ(v2)} that avoids the bad colourings of v2w1vs. Colour y

with g, colour w1 with f , then colour x with e or d depending on whether
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f = d or f = e, then colour vt and vs.

In the case shown in the right drawing of Figure 4.14, we use a new

argument than in the previous cases. Since, |L(v3) \ {ϕ(v2)}| ≥ 2 and

|L(w1)\{ϕ(v1), ϕ(v2)}| ≥ 3, there are two dictatorships for v3w1 with dic-

tator v3. Let Cv3w1 denote the union of those two dictatorships. Similarly,

there is a confederacy Cvk−1y for vk−1y.

By Corollary 3.3.12, there is a confederacy Cw1vs for w1vs (s = 8 in this

drawing) such that every colouring of w1vs in Cw1vs extends to a colouring

of the broken wheel bounded by w1v3 · · · vsw1 whose restriction to v3w1

is in Cv3w1 . Similarly, there is a confederacy Cyvt for yvt that corresponds

to Cvk−1y in the subgraph bounded by vk−1yvt · · · vk−1.
By Lemma 4.2.6, there is a colouring ϕ ∈ Cw1vs and a colouring ψ ∈

Cyvt such that ϕ ∪ ψ extends to a colouring of the wheel with centre x

(bounded by yw1vs · · · vty).

The remaining subcases, shown in Figures 4.15 and 4.16, can be

coloured using similar techniques.

Case 4. G− v3 is a wheel of wheels that is neither a wheel nor a double-

centred wheel.

Again since there are no separating 4-cycles with interior consisting

only of neighbours of v3, there is exactly one neighbour w1 of v3 in the

interior of C and w1 is adjacent to the centre of the wheel of wheels G−v3
(See Figure 4.17).

Let y be the centre of G− v3. By Claim 4.3.6, and since every section

of a wheel of wheels is either a wheel or a broken wheel, v1 is also adjacent

to y. Now we have the 4-cycle v1v2w1yv1. Then either y is adjacent to

v2 or the interior of this cycle consists of x alone and together with the

cycle they make a wheel.

By Claim 4.3.5 any wheel section of G − v3 that is not centred at x

either contains v1 and v2 or w1 and v4, and since there is no separating 4-

cycle with interior that contains any vertex other than x, y is adjacent to

at most one of v2 and v4 and any 5-list vertex different from y is adjacent
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Figure 4.17: G− v3 is a wheel of wheels.
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Figure 4.18: The obstruction contained in H is a wheel of wheels.

to at most one of v1 and w1 if y 6= x.

Now we show how to colour G. If x is the centre of G − v3 then x

is adjacent to v2 since there are no vertices in the interior of the 4-cycle

v1v2w1xv1 (See the middle drawing of Figure 4.17). Since x is adjacent

to v2 and there is no separating 4-cycle with interior containing vertices

other than x, x is not adjacent to v4.
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Figure 4.19: The obstruction contained in H is a wheel of wheels.
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Figure 4.20: The obstruction contained in H is a wheel of wheels.
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Figure 4.21: The obstruction contained in H is a wheel of wheels.
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Figure 4.22: The obstruction contained in H is a wheel of wheels.
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Therefore, if l is the least number ≥ 5 such that x is adjacent to vl,

the section bounded by xw1v4 · · · vlx is a wheel not a broken wheel. Con-

sequently, since this wheel section contains w1, which is an interior vertex

of C different from x, if m is maximum such that x is adjacent to vm, the

subgraph bounded by xv2 · · · vmx does not contain a generalized wheel

subcanvas with principal path v2xvm. By Theorem 3.2.4, any colouring

of v2xvm is extendable to the subgraph bounded by xv2 · · · vmx.

By Claim 4.3.6, and since x is adjacent to v2, it is not adjacent to

vk. Therefore, the section bounded by v1xvm · · · vkv1 is a wheel not a

broken wheel, and so by Lemma 3.2.10 there is at most one colouring of

xv1vk unextendable to that section. Colour x by a colour different from

its colour in that colouring of xv1vk, extend the colouring to the section

bounded by v1xvm · · · vkv1, then extend it to the subgraph bounded by

xv2 · · · vmx.

We can suppose now that the centre y is different from x. Let l and m,

different from 1, 2 and 3, be minimum and maximum respectively such

that y is adjacent to vl and vm.

Choose two colours in L(v3) \ {ϕ(v2)} and delete them from L(w1).

Consider first the case when x is the centre of the 4-cycle v1v2w1yv1.

Suppose that y is adjacent to vk. If L(x) \ {ϕ(v1), ϕ(v2)} is equal to the

set of two colours in L(w1) that remain after deleting the two chosen

colours for v3 and deleting ϕ(v2), let this set be {a, b}.
Colour y by a colour different from ϕ(vk) (if it is coloured, that is

if |V (P )| = 3, and if it is not coloured, colour it first), ϕ(v1), a and

b. Then colour xw1 either ab or ba depending on which of them makes

the colouring of w1yvk (with the now two fixed colours of y and ϕ(vk))

extendable to the subgraph bounded by vkyw1v4 · · · vk. Finally, colour

this subgraph then colour v3 by a colour different from the colour of v4.

If L(x) \ {ϕ(v1), ϕ(v2)} = {a, b} and the two colours remaining in

L(w1) after deleting the two chosen colours for v3 and deleting ϕ(v2)

include a colour c /∈ {a, b}, colour y by a colour different from ϕ(v1) and

ϕ(vk) and the colour of the unique colouring of w1yvk unextendable to

the subgraph bounded by vkyw1v4 · · · vk.
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If the colour given to y is c, colour w1 first (still has one colour in its

list) then colour x (a and b are different from c). If it is different from

c, colour x (by a or b) then colour w1 by c. Extend the colouring to the

subgraph bounded by vkyw1v4 · · · vk then to v3.

Therefore, in case x is the centre of the 4-cycle v1v2w1yv1, we may

assume that y is not adjacent to vk, and so the section bounded by

v1yvm · · · vkv1 is a wheel not a broken wheel. But note that now the

subgraph bounded by vmyw1v4 · · · vm may be a broken wheel as in the

leftmost drawing of Figure 4.17.

Again if L(x) \ {ϕ(v1), ϕ(v2)} = {a, b} and the two available colours

for w1 are also a and b, colour y by a colour different from ϕ(v1), a, b

and the colour of the unique colouring of yv1vk unextendable to the wheel

section bounded by v1yvm · · · vkv1.
Extend the colouring to the wheel section bounded by v1yvm · · · vkv1,

then colour xw1 either ab or ba depending on which of them makes the

colouring of w1yvm extendable to the subgraph bounded by vmyw1v4 · · · vm
(since now y and vm are coloured, it is only one colour of w1 that can

make the colouring of w1yvm bad).

If w1 has an available colour c different from a and b, then if the

colour y receives from the colouring described above is c, we have only

one colour left to colour w1 with and which may make the colouring of

w1yvm unextendable to the subgraph bounded by vmyw1v4 · · · vm.

Let z be the centre of the wheel bounded by v1yvm · · · vkv1. We colour

w1 by c then try to colour y, vm and z such that the colourings of w1yvm

and vkzvm are extendable to the respective broken wheels. With the now

fixed colours of w1 and ϕ(vk) there are two possibilities for the type of

the bad colourings of yvm and two possibilities for the types of the bad

colourings of zvm (cf. Lemma 3.2.11).

If the bad colourings of yvm are de and ed and the bad colourings of

zvm are fg and gf , colour vm by a colour different from f and g, by this

we have avoided the bad colourings of zvm. If this colour is different from

d and e, then we have also avoided the bad colourings of yvm, and if it is

one of d and e then we still can colour y by a colour different from d, e,
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c and ϕ(v1) and so avoid the bad colourings of yvm. Then colour z and

extend the colourings to the respective broken wheels, and finally colour

v3 and x (recall that w1 is coloured c /∈ L(x) \ {ϕ(v1), ϕ(v2)}).
If the two bad colourings of yvm have vm coloured the same and the

two bad colourings of zvm have vm coloured the same, we can avoid all

bad colourings by colouring vm by the third colour (different from the

one involved in the bad colourings of vmy and the one involved in the bad

colourings of vmz).

If the bad colourings of yvm are de and ed while the bad colourings

of vmz involve only one colour f of vm, colour vm by the colour of d and

e different from f , colour y by a colour different from d, e, c and ϕ(v1),

then colour z. The case when the bad colourings of vmz are fg and gf

and the bad colourings of vmy have one colour for vm is similar.

Now we may assume that y is adjacent to v2 (See the rightmost draw-

ing of Figure 4.17). Then by Claim 4.3.6, y is not adjacent to vk, and

so the section bounded by v1yvm · · · vkv1 is a wheel not a broken wheel.

If this section is centred at x, then there are at most two colours of y

that with the given colours of v1 and vk make the colouring of vkv1y

unextendable to this section.

Colour y by a colour different from those two colours and from ϕ(v1)

and ϕ(v2), and extend the colouring to the wheel section bounded by

v1yvm · · · vkv1. Now consider the subgraph bounded by yv2 · · · vmy, which

now has the path v2yvm coloured. Since y is adjacent to v2 and there

is no separating 4-cycle with interior consisting of neighbours of v3, y

is not adjacent to v4, and so the section bounded by yw1v4 · · · vly is a

wheel not a broken wheel. This wheel contains an interior vertex of C

different from y, therefore, the subgraph bounded by yv2 · · · vmy does not

contain a generalized wheel subcanvas with principal path v2yvm, and so

the colouring of v2yvm is extendable to it by Theorem 3.2.4.

Suppose now that the wheel section bounded by v1yvm · · · vkv1 is cen-

tred at a 5-list vertex, and so the wheel section with centre x lies some-

where else, let t be maximum such that vt is in the wheel section centred

at x. As we showed above the section bounded by yw1v4 · · · vly is a wheel,
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and so the subgraph bounded by yv2 · · · vly is colourable whatever colour-

ing is given to v2yvl by Theorem 3.2.4.

Therefore, colour y by a colour different from ϕ(v1), ϕ(v2), the colour

of the unique colouring of yv1vk unextendable to the subgraph bounded by

vkv1yvt · · · vk, and the colour of the unique colouring of yvt unextendable

to the wheel section centred at x. Extend the colouring to the subgraph

bounded by vkv1yvt · · · vk then to the wheel with centre x then to the rest

the subgraph bounded by vkv1yvl · · · vk so that vlyv2 is coloured, then

extend the colouring to the subgraph bounded by yv2 · · · vly.

Case 5. BH is a wheel of wheels that is neither a wheel nor a double-

centred wheel.

See Figures 4.18, 4.19, 4.20, 4.21, and 4.22. This case can be proved

by arguments similar to those of the preceding cases.

4.4 An Extension of a Theorem of Postle

and Thomas

In this section we prove Theorem 2.1.3, which states that a plane graph

with two 2-lists on the outer walk and one inner 4-list is colourable if the

4-list vertex is not the centre of a wheel attached to the outer walk of

the graph. This is an extension of Theorem 3.2.8 of Postle and Thomas.

To prove their theorem, they proved a stronger theorem, Theorem 4.4.1,

below. We also prove Theorem 2.1.3 through a stronger theorem which

is an extension of Theorem 4.4.1. This is Theorem 4.4.2.

Excluding wheels with centre the 4-list vertex is not a necessary con-

dition, but it enables us to go on in the proof of Theorem 4.4.2 following

the method of Postle and Thomas in the proof of Theorem 4.4.1, [11,

Theorem 3.1].

The proofs of Claims 4.3.6 and 4.3.9 are different from the proofs of

the corresponding claims in Theorem 4.4.1. We use Corollaries 3.3.8 and
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3.3.12. Those corollaries were not used in the proof of Theorem 4.4.1.

However, in many parts, the proof of 4.4.2 is almost the same as the

proof of 4.4.1.

Theorem 4.4.1. [11] Let (G,S, L) be a canvas, where S has two compo-

nents: a path P and an isolated vertex u with |L(u)| ≥ 2. Assume that

if |V (P )| ≥ 2, then G is 2-connected, u is not adjacent to an internal

vertex of P and there does not exist a chord of the outer walk of G with

an end in P which separates a vertex of P from u. Let L0 be a set of size

two. If L(v) = L0 for all v ∈ V (P ), then G has an L-colouring, unless

L(u) = L0 and V (S) induces an odd cycle in G.

Theorem 4.4.2. Let (G,S, L, x) be a canvas such that S consists of a

path P and an isolated vertex u. Assume:

(a) all vertices of P have the same list L0 of size 2;

(b) if |V (P )| is 1 or 2, then x is not the centre of a wheel subcanvas of

G;

(c) if |V (P )| > 2, then x is not the centre of a wheel in G; and

(d) if |V (P )| ≥ 2, then:

i. G is 2-connected;

ii. x is not adjacent to two vertices at an odd distance in P ;

iii. u is not adjacent to an internal vertex of P ; and

iv. there is no chord of the outer walk of G having an end in P

that separates a vertex of P from u.

Then either G is L-colourable or L(u) = L0 and V (S) induces an

odd cycle in G.

Proof. Let (G,S, L, x) be a counterexample with |V (G)| minimum and,

subject to that, with |V (P )| maximum. Let C be the outer walk of G.

Claim 4.4.3. G is 2-connected.
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Proof. Suppose for a contradiction that G is not 2-connected. Then by

assumption (d) − i, |V (P )| = 1. Let z be a cut vertex of G. Then G

can be expressed as G = G1 ∪ G2, where V (G1) ∩ V (G2) = {z} and

V (G1) \ V (G2) and V (G2) \ V (G1) are both non-empty.

If u and P are in the same one of G1 and G2, then we colour the

one containing them by minimality or by Theorem 3.2.8, then colour the

other side by Theorem 3.2.6 or Theorem 4.3.1. Therefore we may assume

without loss of generality that u ∈ V (G2) \ V (G1) and the unique vertex

of P is in V (G1) \ V (G2).

Now consider the canvas (G1, S1, L), where S1 = P + z, the graph

obtained from P by adding z as an isolated vertex. There exists an L-

colouring ϕ1 of G1 either by Theorem 4.3.1 or Theorem 3.2.6. Let L1 be

the list assignment of G1 such that L1(v) = L(v) for every v ∈ V (G1)\{z}
and L1(z) = L(z) \ {ϕ1(z)}. Since |V (G1)| < |V (G)|, there exists an L1-

colouring ϕ2 of G1. Note that ϕ1(z) 6= ϕ2(z).

Let L2 be the list assignment of G2 such that L2(z) = {ϕ1(z), ϕ2(z)}
and L2(v) = L(v) for all v ∈ V (G2)\{z}. Consider the canvas (G2, S2, L2),

where S2 consists of the isolated vertices z and u. Since |V (G2)| < |V (G)|,
there exists an L2-colouring ϕ of G2. Letting i be such that ϕi(z) = ϕ(z),

ϕ ∪ ϕi is an L-colouring of G, a contradiction.

Claim 4.3.4 shows G is 2-connected and, therefore, every face of G is

bounded by a cycle. In particular, C is a cycle.. Let v1 and v2 be the two

neighbours of the end-vertices of P in V (C) \ V (P ).

Claim 4.4.4. There is no chord of C with an end in P .

Proof. Suppose for a contradiction that there is a chord with an end in P .

By assumption (d) − iv. in the statement of the theorem, both P and u

are on the same side of the chord. Colour the side of the chord containing

P and u first by minimality or by Theorem 3.2.8 depending on whether

or not x is on the same side, then colour the other side by Theorem 4.3.1

(which is colourable since it contains no wheel subcanvas with centre x)

or by Theorem 3.2.6.
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Claim 4.4.5. There is no chord of C that has P and u on the same side.

Proof. If such a chord exists, colour the side containing P and u by mini-

mality, then extend the colouring to the other side by Theorem 3.2.6.

Claim 4.4.6. v1 6= v2.

Proof. Suppose for a contradiction that v1 = v2. Then v1 = v2 = u. If C

is an odd cycle, then either L(u) = L0 and we are done or L(u) \L0 6= ∅.
Thus, we may assume L(u) \ L0 6= ∅ and C has an L-colouring. Thus,

whether C is odd or even, either we are done or C has an L-colouring ϕ.

Let G′ := G \ V (P ) and let L′ be the list assignment of G′ such that,

L(u) = {ϕ(u)}, and for every v in V (G′) \ {u}, L′(v) is obtained from

L(v) by deleting the colours ϕ gives to its neighbours in P .

Since x is not adjacent to two vertices at an odd distance in P , and

since at most two colours are used in colouring P , |L′(v)| ≥ 3 for every

vertex v different from u on the outer walk of G′. Therefore, G′ has an L′-

colouring ϕ′ by Theorem 4.3.1 or Theorem 3.2.6 such that ϕ′(u) = ϕ(u),

and thus G has an L-colouring, a contradiction.

Claim 4.4.7. For i ∈ {1, 2}, L0 ⊆ L(vi) and |L(vi)| = 3.

Proof. By symmetry, it suffices to prove the claim for i = 1. Suppose for

a contradiction that |L(v1) \ L0| ≥ 2.

Case 1. |V (P )| ≥ 3 or x is adjacent to a vertex in P .

In this case, there is a colour c in L0 such that |L(v1) \ {c}| ≥ 3.

Colour the neighbour of v1 in P by this colour, and then extend the

colouring to P . Let L′ be the list assignment of G − P such that, for

every v ∈ V (G− P ), L′(v) is obtained from L(v) by deleting the colours

of the neighbours of v in P .

If x is adjacent to a vertex in P , then by hypothesis (d)-ii and Theo-

rem 3.2.8, G − P is L′-colourable. If x is not adjacent to a vertex in P ,

and if |V (P )| ≥ 3, then x is not the centre of any wheel (even if not a

subcanvas of G) by hypothesis (c). Thus, x is not the centre of a wheel

94



x

y2y1

z1

v1

w1

w2

u = v2

z2

x y1 = y2

z1

v1 = w1

w2

u

v2

z2

Figure 4.23: x is the centre of a wheel subcanvas of G− P that is not a
subcanvas of G.

subcanvas in G− P . Therefore, G− P is L′-colourable by minimality.

Case 2. |V (P )| ≤ 2 and x is not adjacent to P .

In this case, if x is not the centre of a wheel subcanvas of G−P , then

G is colourable. Thus, we assume that x is the centre of a wheel W that

is a subcanvas of G− P (but not a subcanvas of G). See Figure 4.23 for

examples.

Note that even though, due to hypothesis (d)-ii, we cannot assume

that the interior of G is triangulated, we may assume that the neighbours

of the vertices of P form a path Q. Let y1 and y2 be the two vertices in

W ∩Q closest to v1 and v2 respectively, with distance measured in Q.

Since this is a minimum counterexample, there are no separating 4-

cycles with interior consisting of 5-lists only. Therefore, there are at most

three vertices in ∂W ∩Q. Again since this is a minimum counterexample,

there is no triangle with centre x. Thus, ∂W contains vertices from C.

Let z1 and z2 be the vertices of P adjacent to v1 and v2 respectively,

and let w1 and w2 be respectively the neighbours of y1 and y2 in V (C) ∩
V (∂W ). For i ∈ {1, 2}, let Hi be the subgraph bounded by the viwi-path

in ∂G not containing P , wiyi, and yiQvi.

Let N(P ) denote the set of vertices that have a neighbour in P . Let

L′ be the list assignment of G− P such that, for every v ∈ (V (G− P ) \
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{v1, v2}) ∩ N(P ), L′(v) = L(v) \ L0, and otherwise L′(v) = L(v). Note

that, whether u = vi for some i ∈ {1, 2} or not, there is an L′-confederacy

Cuw for uw, where w is any neighbour of u in V (∂G) \ V (P ).

For i ∈ {1, 2}, if u is in Hi, then by Corollary 3.3.12, Cyiwi
:=

ΦHi
(yiwi, Cuw) contains an L′-confederacy. For i ∈ {1, 2}, let ti be the

neighbour of vi in V (∂G) \ V (P ), and let Cviti be an L′-confederacy

for viti. For i ∈ {1, 2}, if u is not in Hi, then by Corollary 3.3.12,

C ′yiwi
:= ΦHi

(yiwi, Cviti) contains an L′-confederacy.

Since we assumed |L(v1) \ L0| ≥ 2, we can choose Cv1t1 such that the

colours of v1 are not in L0. Since a confederacy contains at least three

colourings, for i ∈ {1, 2}, we can choose colourings for yiwi from Cyiwi
or

C ′yiwi
, depending on whether u is in Hi or not, such that together they are

extendable to W .

In case y1 and y2 are adjacent, we can find such colourings for y1w1

and y2w2 by Lemma 4.2.6. The other two possibilities for y1 and y2 are,

the case when y1 = y2, and the case when there is exactly one vertex

between y1 and y2 on ∂W ∩Q (recall that ∂W ∩Q contains at most three

vertices). In those two cases, we can prove lemmas similar to Lemma

4.2.6 about the existence of appropriate colourings for y1w1 and y2w2.

There are two broken wheels in W with principal paths y1xy2 and

w1xw2. The one with principal path y1xy2 is bounded by a 4-cycle or

a triangle since there are at most three vertices in V (∂W ) ∩ V (Q). We

extend the colourings of y1w1 and y2w2 to x first and then to the broken

wheels; so the colourings should also be chosen such that x still has an

available colour.

Now for i ∈ {1, 2}, we extend the colouring of yiwi to Hi, and then

colour P starting with z2.

Claim 4.4.8. For i ∈ {1, 2}, if vi 6= u, then either vi is the end of a

chord of C that separates P from u, or x is adjacent to vi and a vertex

in P .

Proof. By symmetry it suffices to prove the claim for v1. Suppose that

v1 6= u and that it is not the end of a chord that separates u from P .
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Let P ′ be the path obtained from P by adding v1, let S ′ = P ′+u, and

let L′ be the list assignment of G defined by L′(v1) = L0 and L′(v) = L(v)

for all v ∈ V (G)\{v1}. Consider the canvas (G,S ′, L′). This canvas is not

colourable since (G,S, L) is not. As (G,S, L) was chosen so that |V (P )|
is maximized, if (G,S ′, L′) satisfies the hypotheses of the theorem, then

G[V (S ′)] is an odd cycle and L(u) = L0.

Since by Claim 4.3.3 there is no chord of C with an end in P , u is not

adjacent to an internal vertex of P ′. From this, and since we assumed v1

is not the end of a chord that separates a vertex of P ′ from u, then either

P ′ and x do not satisfy (d)-ii, or G[V (S ′)] is an odd cycle and L(u) = L0.

If P ′ and x do not satisfy (d)-ii, then, since P and x satisfy (d)-ii, x

is adjacent to v1 and a vertex in P . Thus, suppose that G[V (S ′)] is an

odd cycle and L(u) = L0. Then, since by Claim 4.4.4 there is no chord

with an end in P , u = v2.

By Claim 4.4.5, there is no chord that has P and u on the same side.

Thus, u is adjacent to v1 in C. That is, V (C) = V (P ) ∪ {v1, v2}.
Colour v1 by the unique colour in L(v1)\L0, then extend the colouring

to C − v1 using L0. Now we have the following two cases.

Case 1. |V (P )| is either 1 or 2.

In this case, C is a triangle or a 4-cycle. Then G colourable unless C

is a 4-cycle and C + x is a wheel. Since G contains no wheel subcanvas

with centre x, G is colourable.

Case 2. |V (P )| > 2.

In this case, delete from the lists of the vertices in the interior of C

the colours of their neighbours in P . Then, the subgraph G′ consisting

of the union of the interior of C and v1v2 now has v1v2 coloured and has

its other outer boundary vertices having lists of size at least three. Since

|V (P )| > 2, G does not contain any wheel with centre x. Thus, G′ does

not contain a wheel subcanvas with centre x, and so it is colourable by

97



Theorem 4.3.1 or Theorem 3.2.6.

Let Q be the path in C obtained by adding v1 and v2 to P .

Claim 4.4.9. If w1 and w2 are two consecutive neighbours of x in Q such

that {w1, w2} 6= {v1, v2}, then the interior of the cycle xw1Qw2x is empty.

Proof. Let w1 and w2 be two vertices as in the statement of the claim.

Suppose for a contradiction that the interior of xw1Qw2x is not empty.

We may assume without loss of generality that w2 /∈ {v1, v2}.
Colour xw1Qw2x with its exterior by induction. Let G′ be the sub-

graph x, w1, and the vertices in the interior of xw1Qw2x. Let L′ be the list

assignment of G′ such that for every v ∈ V (G) \ V (G′), L′(v) is obtained

from L(v) by deleting the colours of the neighbours of v in G− V (G′).

There is a precoloured path of length one in ∂G′, namely xw1, and

since w2 /∈ {v1, v2}, every vertex in ∂G′ not in this path has a list of size

at least three. Thus, G′ is colourable by Thomassen’s Theorem 3.2.6.

Claim 4.4.10. If {v1, v2}∩ {u} = ∅, then at least one of v1 and v2 is the

end of a chord separating P from u.

Proof. Suppose for a contradiction that v1 and v2 are both different from

u and none of them is the end of a chord separating P from u. By Claim

4.4.8, for i ∈ {1, 2}, x is adjacent to vi and a vertex in P at an odd

distance from vi in Q. From this, and hypothesis (d) − ii, we have that

Q is of even length.

By Claim 4.4.9, and since x is adjacent to a vertex in P , the interior

of xv1Qv2x is empty of vertices. Thus, we try to colour G−P a colouring

ϕ such that:

• for i ∈ {1, 2}, {ϕ(x), ϕ(vi)} 6= L0, and

• if ϕ(v1) and ϕ(v2) are both in L0, then ϕ(v1) = ϕ(v2).

Then we extend ϕ to P .
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Since xv1Qv2x is empty, this is equivalent to finding such a colouring

in case P consists of one vertex. Denote this vertex by z. Now we may

assume that the graph contains only two 2-lists, u and z.

Let u1 (u2) be the neighbour of u that belongs to the path not con-

taining z between v1 (v2) and u in C. We prove that at least one of v1,

v2, u1, and u2 is the end of a chord that separates u and z.

Since {v1, v2} ∩ {u} = ∅ by hypothesis, {u1, u2} ∩ {z} = ∅. Suppose

for a contradiction that no one of v1, v2, u1, and u2 is the end of a chord

that separates u and z. Then, by symmetry, x is adjacent to u1, u, and

u2.

For i ∈ {1, 2}, let Qi be the path between ui and vi in C − {u, z}.
Since G does not contain a wheel subcanvas with centre x, the subgraphs

bounded by xv1Q1u1x and xv2Q2u2x are not both broken wheels.

We may assume without loss of generality that the subgraph bounded

by xv1Q1u1x is not a broken wheel. Then, there is at most one colouring

of v1xu1 unextendable to it. Delete from L(x) the colour involved in that

colouring. Now, the subgraph bounded by xv1zv2Q2u2uu1x is colourable

by induction and its colouring is extendable to G, a contradiction.

Thus, at least one of v1, v2, u1, and u2 is the end of a chord that

separates u and z. If u1 or u2 is the end of such a chord, and v1 and v2

are not, then we exchange the names of u1 and v1, u2 and v2, and u and

z in case P = z.

If P 6= z, then we can pick one neighbour z of x in P , delete the rest

of P and add the edges zv1, zv2. This is a smaller instance and so is

colourable. This colouring extends to a colouring of G.

Claim 4.4.11. For i ∈ {1, 2}, if vi 6= u, then vi is the end of a chord of

C that separates P from u.

Proof. By symmetry, it suffices to prove the claim for i = 1. Suppose

for a contradiction that v1 6= u, and v1 is not the end of a chord that

separates P from u. By Claim 4.4.8, x is adjacent to v1 and a vertex in

P at an odd distance from v1 in Q.
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By Claim 4.4.10, we have the following two cases.

Case 1. v2 is the end of a chord separating P from u.

This text, the proof of Case 1, was prepared by Bruce Richter, follow-

ing our discussions on how to resolve this case. We thank Luke Postle for

his suggestions.

We apply Theorem 3.3.11. In this instance, our application requires

knowledge of an harmonica.

Definition. Let T = (G,P ∪ P ′, L) be a canvas such that P and P ′

are distinct paths of length one and let C be a government for P . Then T

is an harmonica from P to P ′ with government C if one of:

1. C is a dictatorship, G = P ∪ P ′, and the dictator of C is the vertex

of P ∩ P ′;

2. C is a dictatorship with dictator z having colour c, there is another

path P ′′ of length one and T contains an harmonica H from P ′′ to

P ′, T = H ∪ P , z is adjacent to both ends u, v of P ′′, c ∈ L(u) =

L(v), |L(u)| = 3, and the government C ′′ is the democracy using

L(u) \ {c};

3. C is a democracy {(a, b), (b, a)}, there is a vertex z adjacent to both

ends u, v of P , L(z) = {a, b, c} and, G − u is an harmonica from

the path zv to P ′ with the dictatorship {(c, a), (c, b)} having z as

dictator.

It is routine to see that if T is an harmonica, then, from P to P ′,

there is a sequence C0 = C, C1, . . . , Ck of governments that alternate

between dictatorships and democracies. These correspond precisely to

the alternation between adding the two vertices of a democracy to a

dictator in (2) and the dictator to the democracy in (3).

Turning now to the proof of Case 1, let u′ be any boundary neighbour

of u and C−1 be any confederacy of possible colourings of u and u′; P−1 is
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the path (u, u′). Applying Theorem 3.3.11, there is a confederacy C0 at

the path P0 = (v2, w) such that any colouring of P0 with a colouring in

C0 L-colours the portion of G on the side of P0 that contains P−1 so that

P−1 is coloured with a colouring from C−1.
If the confederacy C0 can be chosen so that, for some colour c ∈ L0,

no colouring in C0 colours v2 with c, then we proceed as follows. Colour P

starting with c on the neighbour of v2. Delete P and remove the colours

of their P neighbours from all the lists of the neighbours of P , other than

v1. Notice that we have deleted at most one colour from L(x), so x has

at least three colours. We retain the original L(v1) (even though one of

its colours appears on its P -neighbour).

Theorem 3.3.11 again implies (v1, x) has a confederacy Cx such that

each of its colourings extends to an L-colouring of the other portion of

G created by cleaving on v2w, with the colouring of v2w coming from C0.
Since at least one of the colourings in Cx colours v1 so that its colour is

different from the colour of its P -neighbour, we are done in this case.

In the remaining case, some colouring in C0 uses the colour of the P -

neighbour of v1. By a small case-checking, it is easy to see that there is

a government G0 contained in the set of colourings involved in C0 and a

colour c ∈ L0 such that no colouring in G0 colours v2 with c. Again colour

P by starting with c on the P -neighbour of v2, delete P , and, except from

L(v1) delete the colours of the P -neighbours of all the vertices.

Applying Theorem 3.3.11 again, either we get a confederacy at (v1, x)

or we get an harmonica. In the case of the confederacy, we finish as in

the case there was a colour c ∈ L0 such that no colouring in C0 coloured

v2 with c. Thus, we may assume that there is an harmonica H from

P0 = (v2, w) to (x, v1) with government G0 (that does not colour v2 with

c). See Figure 4.24.

Notice that L0 ⊆ L(v1) but the colour of the P -neighbours of x is

now not in L(x). Therefore, L(v1) 6= L(x), so the government at the

(x, v1) end of H is not a democracy. It follows that this government is a

dictatorship.

Let G0, G1, . . . , Gk be the sequence of governments obtained in the
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Figure 4.24: The dashed edges are in a harmonica from wv2 to v1x.

harmonica H. For each Gi that is a dictatorship, let zi be the dictator

and let ci be the colour of zi in Gi. For each Gi that is a democracy, let

{wi, yi} be the vertices of Gi and let Li be the set of two colours used in

Gi. The following claim will be helpful for the remainder of the proof.

Let J be the subgraph of G obtained from the portion of G cleaved

by v2w that contains xv1 by deleting V (P ).

Claim. For each i such that Gi is a democracy, one of wi, yi is in the

boundary walk of J from w to v1 that does not include either v2 or x. The

other of wi, yi is in the boundary walk of J from v2 to x that does not

include either v1 or w.

Proof. If i = 0, then the result is trivial. Otherwise, the government Gk

at x, v1 is a dictatorship, so i < k. Thus, there is a dictator zi+1 joined

to wi and yi. Planarity shows that wi, yi are in the different boundary

walks. �

We choose the labelling so that wi is on the wv1-subpath of the bound-

ary of J and yi is on the v2x-subpath. Note that each yi has a list of size

3, so every yi is adjacent to vertices of P having different colours. In

particular, L(yi) ∩ L0 = ∅.
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Note that being an harmonica implies, for all i such that Gi is a

democracy, |L(zi+1) ∩ L(yi)| ≥ 2. Since L(yi) ∩ L0 = ∅, we see that

|L(zi+1) ∩ L0| ≤ 1. Since |L(v1) ∩ L0| = 2, we conclude that vi is not a

dictator. It follows that x is the dictator zk of Gk.

We now show that we can finish the L-colouring of G. We know that

x is joined to the democracy wk−1, yk−1. The colour of x is ck. We can

colour v1 with a colour in L(v1) that is neither ck nor the colour of the

P -neighbour of v1.

Letting Pk denote the boundary walk in J from wk−1 to v1, we consider

the problem of colouring the portion Jk of J bounded by Pk∪(v1, x, wk−1).

Suppose first that Jk does not contain a broken wheel centred at x. Colour

wk−1 with a colour different from c1 and, if it is adjacent to v1, the colour

of v1. Now apply Theorem 3.2.4 to colour Jk.

In the other case, x is the centre of a broken wheel, so x is adjacent

to all the vertices of Pk (there are no chords of Pk). Since there are no

separating 3-cycles, Jk is this broken wheel. We colour Pk starting from

the v1 end. Since wk−1 has the two colours in Lk−1 different from ck, it

can be coloured from Lk−1. This forces the colour of yk−1 to the other

colour in Lk−1.

For the next iteration, there is a dictator zk−2 adjacent to both wk−1

and yk−1. We colour zk−2 with ck−2. Let Pk−2 be the boundary walk in

J − zk−2 joining either wi−3 to wi−1 or yi−3 to yi−1. (This is the general

situation; we will discuss the possibility that zk−2 ∈ {w, v2} at the end.)

Then Pk−2 together with the edges from its ends to zk−2 bounds a re-

gion Jk−2, which can be coloured exactly as we did Jk above. Continuing

in this way (there is an obvious induction that is left to the reader), we

come to the remaining possibility that z0 ∈ {w, v2}. But exactly the same

argument applies. The vertex in {w, v2} \ {z0} has two different colours

in its dictatorship, so that the corresponding region J0 can be coloured

in the same way as the earlier Ji’s.

Case 2. v2 = u.
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Figure 4.25: Case 2 in Claim 4.4.11.

Subcase 2.1. L(u) = L0.

In this case, extend the path P to include the vertex u. Since P was

chosen of maximum length, x is adjacent to u and a vertex in P at an

odd distance from u. Since x is adjacent to v1 and a vertex at an odd

distance from v1, again the path Q (the extension of P to include v1 and

u) is of even length.

If P consists of one vertex, then the side G′ of v1xu not containing P

is not a broken wheel since G is not a wheel with centre x. In case P has

more than one vertex, G′ may be a broken wheel.

If G′ is not a broken wheel, then we colour u and v1 the same colour

from L0, colour x by a colour not in L0 and different from the unique

colour involved in the colouring of v1xu unextendable to G′. Such a

colouring is extendable to P and G′, that is to G.

Let a and b be the colours of L0. Then, the bad colourings of v1xu for

G′ are either {aca, ada} for some two colours c and d, or {aba, aca, bab, bcb,
cac, cbc} for some colour c. In both cases, there is a colouring of v1xu that

gives v1 and u the same colour from L0 yet avoids all the bad colourings.

Such a colouring is extendable also to P , and so G is colourable.

Subcase 2.2. L(u) 6= L0.
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Colour u by a colour not in L0 then delete u and delete this colour

from the lists of the neighbours of u. The neighbour of u in C − P may

now have a list of size 2. The subgraph G − u is colourable unless it

contains a wheel subcanvas with centre x.

Let W be a wheel subcanvas with centre x. By hypothesis (c) in

the statement of this Theorem, P contains at most two vertices. Let

P = p1p2, where p1 is adjacent to u. Since W is a subcanvas of G−u but

not of G, ∂W contains vertices that are neighbours of u in the interior

of C. It contains at most two such vertices since there are no separating

triangles. See Figure 4.25.

In case ∂W contains one neighbour of u in the interior of C we denote

it by w2, and in case they are two we let w1 denote the one that has

neighbours in P , and let w2 denote the other one. Suppose that C =

up1p2v1z1 · · · znu, and that the largest i such that zi is in ∂W is k.

If the subgraph bounded by uw2zk · · · znu is a broken wheel, then the

subgraph bounded by uw1p2v1z1 · · · znu in case u has two neighbours in

the interior of C, and G in case u has one such neighbour, are double-

centred wheels.

In case the subgraph uw1p2v1z1 · · · znu is a double-centred wheel, we

give u a colour that avoids the unique colouring of uw2p2, given by Lemma

4.2.4, unextendable to this double-centred wheel. Then, p1, p2, w2 in this

order, and then extend the colouring to G. See the left drawing of Figure

4.25.

In case G is a double-centred wheels, colour u a colour that avoids the

unique colouring of up1p2, given by Lemma 4.2.4, unextendable to G.

Thus, the subgraph bounded by uw2zk · · · znu is not a broken wheel.

In case u has one neighbour in the interior of C, we colour G as follows.

Colour p2 by a colour that avoids the unique colouring of p2w2 unextend-

able to W given by Lemma 4.2.1. Then, colour p1, u, and then of the two

colours remaining in L(w2), choose the one that avoids the unique colour-

ing of uw2zk unextendable to the subgraph bounded by uw2zk · · · znu.

Now, extend this colouring to W , and then to the rest of G.

In case u has two neighbours in the interior of C, and the sub-
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graph bounded by uw2zk · · · znu is not a broken wheel, the subgraph

bounded by uw1xzk · · · znu is not a generalized wheel with principal path

uw1z. Thus, any colouring of uw1x is extendable to subgraph bounded

by uw1xzk · · · znu.

Since |L(x)| ≥ 4, there is a colour in L(x) that avoids all the bad

colourings of v1xzk for the broken wheel bounded by xp2v1z1 · · · zkx.

Colour x with that colour, colour p2, p1, u, w1 in this order, then ex-

tend the colouring to the subgraph bounded by uw1xzk · · · znu, and then

to the broken wheel bounded by xp2v1z1 · · · zkx.

Claim 4.4.12. v1v2 is a chord of C.

Proof. By Claim 4.4.6, v1 6= v2. Thus, we may assume without loss of

generality that v1 6= u. By the previous claim, v1 is the end of a chord

of C that separates u from P . This and Claim 4.4.4 imply that v2 6= u

as well. Again by the previous claim, v2 is the end of a chord of C which

separates u from P . By planarity and 2-connectedness of G, it follows

that v1v2 is a chord of C.

Claim 4.4.13. |V (P )| = 1.

Proof. Suppose for a contradiction that |V (P )| ≥ 2 and let G1 and G2 be

the subgraphs such that G = G1∪G2, V (G1)∩V (G2) = {v1, v2}, V (P ) ⊆
V (G1) and u ∈ V (G2). Let y /∈ V (G) be a new vertex and construct a

new graph G′ with V (G′) = V (G2)∪{y} and E(G′) = E(G2)∪{yv1, yv2}.
Let L(y) = L0. Consider the canvas (G′, S ′, L), where S ′ consists of the

isolated vertices y and u. Since |V (P )| ≥ 2, |V (G′)| < |V (G)|. By

minimality of (G,S, L), there exists an L-colouring ϕ of G′. Hence there

exists L-colouring ϕ of G2, where {ϕ(v1), ϕ(v2)} 6= L0.

We extend ϕ to an L-colouring of P ∪G2. First colour P . If |V (P )| =
2, then G[V (P )∪ {v1, v2}] is a 4-cycle, and its interior is colourable since

there is no wheel subcanvas with centre x in G. If |V (P )| > 2, let L′(v1) =

{ϕ(v1)} and L′(v2) = {ϕ(v2)}, and for v ∈ V (G1) \ (V (P ) ∪ {v1, v2}) let

L′(v) be obtained from L(v) by deleting the colours of the neighbours

of v in P . Then G1 \ V (P ) is L′-colourable either by Theorem 4.3.1 or
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Theorem 3.2.6 (in case x is adjacent to P ) since G does not contain any

wheel with centre x (as |V (P )| > 2). The union of the colourings of G1

and G2 is a colouring of G, a contradiction.

Let z be such that V (P ) = {z}.
Since v1 and v2 are adjacent, both u1 and u2 are different from z (Recall

the definition of u1 and u2 from the proof of Claim 4.4.10). Planarity and

2-connectedness of G imply that at least one of u1 and u2 is not an end of

a chord that separates z from u different from u1u2. Therefore, we have

by symmetry from Claims 4.4.11 and 4.4.12 that u1 and u2 are adjacent.

We also have by symmetry and Claim 4.4.7 that |L(u1)| = |L(u2)| = 3

and L(u) is contained in both L(u1) and L(u2).

Claim 4.4.14. L(v1) = L(v2) or L(u1) = L(u2).

Proof. In the latter case we exchange the names of v1 and u1, v2 and u2,

z and u, and L0 and L(u).

Suppose that L(v1) 6= L(v2) and L(u1) 6= L(u2). Since G is planar,

either v1 is not an end of a chord of C separating v2 from u, or v2 is not

an end of a chord separating v1 from u. Assume without loss of generality

that v1 is not in a chord of C separating v2 from u. This implies that v1

is not an end of a chord in C other than v1v2. Let v′ be the vertex in C

distinct from v2 and z that is adjacent to v1.

Let c ∈ L(v1)\L0. Let G′ = G−{z, v1}, and L′(v) be either L(v)\{c},
if v is adjacent to v1, or L(v), otherwise. Note that |L′(v2)| ≥ 3 as

L(v1) 6= L(v2) and L0 ⊆ L(v1) ∩ L(v2). Let S ′ consist of the isolated

vertices v′ and u.

Case 1. G′ does not contain a wheel subcanvas with centre x.

In this case, G′ has an L′ colouring. If u 6= v′, this follows from the

minimality of G. If u = v′, this follows from Theorem 4.3.1 or Theorem

3.2.6. Since this L′-colouring of G′ can be extended to an L-colouring of

G, we have a contradiction.
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Figure 4.26: W is a wheel subcanvas ofG−{z, v1}, G−{z, v2}, G−{u, u1},
and G− {u, u2}.

Case 2. G′ contains a wheel subcanvas W with centre x.

Since this subcanvas is not a subcanvas of G, it contains in its outer

boundary a vertex from the interior of C that is a neighbour of v1. By

the definition of subcanvas, any vertex of ∂W not in C is a neighbour of

v1. Now, since there are no separating 4-cycles with interior consisting of

5-lists only, there are at most two vertices of ∂W in the interior of C.

Again by planarity, either u1 is not the end of a chord of C separating

z from u2, or u2 is not the end of a chord separating z from u1. Thus, by

symmetry with v1 and v2, W is a wheel subcanvas of either G − {u, u1}
or G − {u, u2}. Now, if there are two vertices of ∂W in the interior of

C, then both are adjacent to v1 as well as to u1 or u2. Therefore, it is

exactly one vertex of ∂W in the interior of C; call it w.

In caseW is a subcanvas ofG−{u, u1}, G contains the path v1wu1, and

in case W is a subcanvas of G−{u, u2}, G contains the path v1wu2 (those

are not symmetric). By planarity, in both cases, none of the vertices v1,

v2, u1, and u2 is the end of a chord that separates z from u other than v1v2

and u1u2. Therefore, W is a wheel subcanvas of G−{z, v2}, G−{u, u1},
and G− {u, u2} (See Figure 4.26).

For i ∈ {1, 2}, let Hi be the subgraph bounded by viwui and the
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viui-path in C − z. Then W is either contained in H1 or in H2. Assume

without loss of generality that W is contained in H1 and let y (y′) be the

vertex in V (W ) ∩ V (C) that is closest to v1 (u1) with distance measured

in C − z. Let H3 (H4) be the subgraph of H1 bounded by v1wy (u1wy
′)

and the path in C − z between v1 (u1) and y (y′).

We colour G as follows. Let a be the unique colour in L(v1)\L0, and b

the unique colour in L(u2) \L(u). There is a dictatorship C1 for v1w such

that v1 is the dictator and its colour in every colouring in C1 is a, and

such that the colours given to w by the colourings in C1 are all different

from b.

By Corollary 3.3.8, there is a government C2 for yw such that evey

colouring of yw in C2 is extendable to a colouring of H3 whose restriction

to v1w is in C1. Choose from C2 a colouring for yw different from the

unique bad colouring for W given by Lemma 4.2.1, and then extend that

colouring to both W and H3.

Now y′w is coloured (since W is), extend its colouring to a colouring

of H4 by Theorem 3.2.6, and then colour u2 by b. The colour b of u2 is

different from the colour of u1 since it is not in L(u1) by the assumption

L(u1) 6= L(u2) and the fact that L(u) is contained in both L(u1) an L(u2).

It is also different from the colour of w by our choice of the government

C1.
Now extend the colouring of wu2 to a colouring of H2 by Theorem

3.2.6 (recall that L(v2) has three colours different from the colour of v1).

Finally, colour z and u (they are colourable since v1 is coloured by a colour

not in L0 and u2 is coloured by a colour not in L(u)).

By symmetry between z, v1, v2 and u, u1, u2, assume that L(v1) =

L(v2).

Claim 4.4.15. One of v1, v2 is the end of a chord of C distinct from v1v2

that separates u from z.

Proof. Suppose for a contradiction that there is no such chord. Let c ∈
L(v1) \ L0 = L(v2) \ L0, and let L1 be a set of size two such that c ∈
L1 ⊆ L(v1). Let L1(v1) = L1(v2) = L1 and L1(v) = L(v) for all v ∈
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V (G) \ {z, v1, v2}. Let P ′ denote the path with vertex-set {v1, v2} and

consider the canvas (G− z, P ′ + u, L1). Note that G− z is 2-connected,

since G is 2-connected and since there are no vertices in the interior of

the triangle zv1v2z.

Since P ′ has no internal vertex, and there is no chord with an end in

P ′ which separates a vertex of P ′ from u, and since G − z contains no

wheels subcanvas with centre x, and G is a counterexample, hypothesis

(d)-ii is not satisfied in G− z. That is, x is adjacent to v1 and v2.

Case 1. L(u1) = L(u2).

In this case, by symmetry, x is adjacent to u1 and u2. At most one of

the subgraphs Hi bounded by vixui and the viui-path in C−z, i ∈ {1, 2},
is a broken wheel since G contains no wheel subcanvas with centre x.

Thus, for at least one of Hi, i ∈ {1, 2}, it is at most one colouring of vixui

that is not extendable to it.

We choose the colours of v1, v2, u1, u2, and x such that at least one of

v1 and v2 is not coloured from L0, at least one of u1 and u2 is not coloured

from L(u), and for i ∈ {1, 2}, the colouring of vixui is extendable to Hi.

Case 2. L(u1) 6= L(u2).

In this case, let d denote the unique colour in L(u1) \L(u). Note that

d /∈ L(u2) by assumption. Colour u1 with d, and delete d from the lists

of the neighbours of u1. Then, G − {u1, u} contains two 2-lists, namely,

z and the neighbour of u1 on C different from u and u2. If G−{u1, u} is

not colourable by induction, then it contains a wheel subcanvas W with

centre x.

For W not to be a subcanvas of G, it has to contain in its outer

walk vertices that are neighbours of u1 in the interior of C. It cannot

contain more than two such vertices since there are no separating 4-cycles

with interior consisting of 5-lists. Similarly, G− {u2, u} contains a wheel

subcanvas with centre x.
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Figure 4.27: G− {u1, u2} contains a wheel subcanvas with centre x that
is not a subcanvas of G.

Thus, the unique vertex in the interior of C that is in ∂W is the

common neighbour of u1 and u2 in the interior of C. See Figure 4.27.

Let y be the common neighbour of u1 and u2 in the interior of C. For

i ∈ {1, 2}, let zi be the common neighbour of x and y in the viui-path in

C − z.

The following text was prepared by Bruce Richter.

Let w1 and w2 be the boundary neighbours of v1 and v2, respectively that

are adjacent to x. Recall that L(z) = {a, b} and L(v1) = L(v2) = {a, b, c}.

Lemma 1. Suppose there is an L-colouring φ of either:

1. for some i ∈ {1, 2}, vi and x such that φ(vi) = c and both |L(wi) \
{φ(x), φ(vi)}| ≥ 2 and |L(v3−i) \ {φ(x), φ(vi)}| ≥ 2; or

2. v1, v2, and x such that c ∈ {φ(v1), φ(v2)} and, for both i = 1, 2,

|L(wi) \ {φ(x), φ(vi)}| ≥ 2.

Then there is an L-colouring of G.

Proof. Extend φ by colouring y to avoid φ(x), L(u2)\L(u1), and any

two colours in L(z2)\φ(x). Notice that there are still two colours available
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at u1, but possibly only one at z1. There are two colours available at all

the vertices from u2 to either w2 or v2. Starting by colouring u2 with

L(u2) \L(u1), we colour up to z2 and on to either w2 or v2. On the other

side, colour up and down from z1 to either w1 or v1 going up, and down

to u1. �

It remains to show that there is a colouring φ satisfying one of the

hypotheses of the lemma.

Claim 1. If there is an i ∈ {1, 2} such that c /∈ L(wi), then there is an L-

colouring φ of x, vi such that φ(vi) = c and both |L(wi)\{φ(x), φ(vi)|}| ≥ 2

and |L(v3−i) \ {φ(x), φ(vi)|}| ≥ 2.

Proof. Colour vi with c and x with a colour in L(x) \ {a, b, c}. Since

c /∈ L(wi), |L(wi) \ {φ(x), φ(vi)|}| ≥ 2. That φ(x) /∈ {a, b, c}, φ(x) /∈
L(v3−i), so |L(v3−i) \ {φ(x), φ(vi)|}| ≥ 2. �

Claim 2. If L(x) \ (L(w1) ∪ L(w2)) 6= ∅, then there is an L-colouring

φ of x, v1, v2 such that c ∈ {φ(v1), φ(v2)} and, for both i = 1, 2, |L(wi) \
{φ(x), φ(vi)}| ≥ 2.

Proof. By Claim 1, we may assume c ∈ L(w1) ∩ L(w2). Set φ(x)

to be in L(x) \ (L(w1) ∪ L(w2)) (so φ(x) 6= c), φ(v1) = c, and φ(v2) ∈
{a, b} \ {φ(x)}. �

Claim 3. If, for some i ∈ {1, 2}, L(x) \ (L(wi) ∪ {a, b}) 6= ∅, then

there is an L-colouring φ of x and vi such that φ(vi) = c and that both

|L(wi) \ {φ(x), φ(vi)|}| ≥ 2 and |L(v3−i) \ {φ(x), φ(vi)|}| ≥ 2.

Proof. Choose φ(x) ∈ L(x) \ (L(wi) ∪ {a, b}). Colour vi with c. �

At this point:

1. Claim 2 shows we may assume L(x) ⊆ L(w1) ∪ L(w2); and

2. Claim 3 shows we may assume, for i = 1, 2, L(x) ⊆ L(wi) ∪ {a, b}.
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Since |L(x)| > |L(w1)|, Item 2 shows either a or b is in L(x) \ L(w1);

we choose the labelling of a, b so that a ∈ L(x) \ L(w1). Now Item 1 and

the fact that |L(x)| > |L(w2)| shows that b ∈ L(x) \ L(w2).

Set φ(x) = a, φ(v1) = c, and φ(v2) = b to leave two choices for each

of w1 and w2.

Here ends the text prepared by Bruce Richter.

Now, suppose without loss of generality that v2 is the end of a chord

of C distinct from v1v2 that separates u from z. Choose such a chord v2y

such that y is closest to v1 measured by the distance in C−v2. Let G1 and

G2 be the connected subgraphs of G such that V (G1)∩ V (G2) = {v2, y},
G1 ∩G2 = G, z ∈ V (G1) and u ∈ V (G2).

Select a colour c as follows. If v1 is adjacent to y, let c ∈ L(v1) \L0 =

L(v2)\L0. Note that in this case V (G1) = {z, v1, v2, y} (since the interiors

of the triangles zv1v2z and yv1v2y are colourable as in Claim 4.3.3). If v1

is not adjacent to y, consider the canvas (G1, P
′′, L), where P ′′ = zv2y.

Since G1 does not contain a wheel subcanvas with centre x, and since

it is not a broken wheel (as y was chosen to be the closest neighbour of v2

to v1 and we are assuming here it is not adjacent to v1), then by Lemmas

3.2.10, 4.2.4 and 4.2.5, there is at most one colouring of P ′′ that does not

extend to G1. If such a bad colouring of P ′′ exists, let c be the colour of

y in that colouring, otherwise let c be arbitrary.

Consider the canvas (G2, S
′, L′), where S ′ consists of the isolated ver-

tices y and u, L′(y) = L(y) \ {c} and L′(v) = L(v) otherwise. As

|V (G2)| < |V (G)|, there exists an L′-colouring of G2. This colouring

is extendable to an L-colouring of G by the choice of c, a contradiction.
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