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Abstract

We prove that graphs that can be made planar by deleting two edges are
5-choosable. To arrive at this, first we prove an extension of a theorem
of Thomassen. Second, we prove an extension of a theorem Postle and
Thomas. The difference between our extensions and the theorems of
Thomassen and of Postle and Thomas is that we allow the graph to
contain an inner 4-list vertex. We also use a colouring technique from
two papers by Dvoidk, Lidicky and Skrekovski, and independently by

Compos and Havet.
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Chapter 1
Introduction

In Graph Theory, one of the most fundamental theorems is the Four
Colour Theorem. Many colouring theorems and conjectures are either
extensions of or inspired by the Four Colour Theorem. One direction of
extension is colourability of graphs that are close to planar, another is
list-colourings of planar graphs.

A major generalization in the first direction is Albertson’s Conjecture,
which states that if a graph has chromatic number r, then its crossing
number is at least that of K. In case r = 5, this conjecture is equivalent
to the Four Colour Theorem. The conjecture is proved for r < 16 (cf. [9],
[2] and [3]).

In the second direction we see Thomassen’s famous 5-choosability the-
orem for planar graphs [12] and Voigt’s examples of planar graphs that
are not 4-choosable [14].

The study of list-colourability of graphs that are not far from planar
is also a natural growing line of research. Compos and Havet [4], and
independently Dvoidk, Lidicky, and Skrekovski [5] proved that graphs
with two crossings are 5-choosable.

Here we prove in Theorem 2.1.1 that graphs that can be made planar
by deleting two edges, no matter how many crossings there are (there can
be arbitrarily many), are 5-choosable. This should give the maximum
number of edges that can be added to a planar graph without losing 5-

choosability, since for example Ky is a graph that can be made planar by
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deleting three edges but it has chromatic number 6.

As mentioned above, 5-choosability of planar graphs was proved by
Thomassen, that was in 1994. In 2011, Compos and Havet proved (in a
minor theorem, Theorem 3, in the paper [4] where they prove 5-choosability
of graphs with two crossings) that graphs that can be made planar by
deleting one edge are also 5-choosable.

The bigger ambition behind our work was to prove a list-colouring
analogue of Theorem 4.1 in [7], not the main theorem there, by Erman,
Havet, Lidicky and Pangrac, 2011. In that theorem they prove that if
a graph can be made planar by deleting a set of at most 2k edges, then
it is (4 + k)-colourable. The proof of that colouring theorem is a simple
induction on k, but this seems not to go that simply with list-colouring.

In a plane graph G, the outer walk is the boundary of the infinite
face, and an inner vertex is a vertex not in the outer walk. If L is a
list-assignment of G, then for v € V(G), L(v), or just v for short, is a
k-list if |L(v)| > k. Our proof is in three stages.

(1) An extension of a theorem of Thomassen from 2007 [13]. We prove
that a plane graph with a precoloured path of length at most two
on the outer walk and an inner vertex with a list of size at least
four is colourable unless it contains a wheel-like structure attached
to the outer walk and the attachment vertices have few colours in
their lists. This is Theorem 4.3.1.

(2) An extension of a theorem of Postle and Thomas from 2015 [11].
This is concerned with colouring plane graphs with two 2-lists on
the outer walk and one inner 4-list that do not contain a wheel
attached to the outer walk with centre the 4-list. This is Theorem
2.1.3, proved in Section 4.4. In the proof of this theorem, the proofs
of Case 1 of Claim 4.4.11, and Case 2 of Claim 4.4.15, are proved
and written by Bruce Richter.

(3) We colour a part of a shortest path between the two edges carefully
so that after deleting its coloured vertices we obtain a graph with

a list assignment similar to that in (2). This is shown in Chapter
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3. This technique of colouring carefully a shortest path between
two bad configurations was done twice before in 2011 to prove that
graphs with two crossings are 5-choosable, by Dvorak, Lidicky, and
Skrekovski [5], and independently by Compos and Havet [4].

In this work, we measure how far from planar the graph is by the
number of edges to delete to obtain a planar graph. There are other ways
to measure this. These include the crossing number, the distance between
crossings, and the number of vertices to delete to remove all the crossings.
Also whether the crossings are independent (that is the edges involved in
them do not have end-vertices in common) affects the chromatic number
and the choice number.

Dvotrak, Lidicky and Mohar proved that every graph drawn in the
plane so that the distance between every pair of crossings is at least 15
is 5-choosable [6]. In the same paper they also allowed some vertices to
have lists of size four only, as long as they are far apart and far from the
crossings.

Inspired by this, one possible way of extending our work is to answer

the following question.

Question 1.0.1. What is the choice number of a graph that can be made
planar by deleting edges {ey,- - ,ex} such that for every distinct i and j,
the distance between any crossing with e; and any crossing with e; is at
least d ¢

In 2009 [9] Oporowski and Zhao asked whether graphs of crossing
number at most 5 and clique number at most 5 are 5-colourable. In
2011 [7], Erman, Havet, Lidicky and Pangric answered this question in
the negative (Theorem 1.3) but they showed that graphs with crossing
number at most 4 and clique number at most 5 are 5-colourable (Theorem
1.4).

They also showed in the same paper [7] that if a graph with clique
number at most 5 has three edges whose removal leaves the graph planar,
then it is 5-colourable (Theorem 1.6). Furthermore, they proved that if

a graph G has clique number at most 6 and there is a set of at most



seven edges whose deletion from G results in a planar graph, then G is
6-colourable (Theorem 6.2). The last theorem in that paper, Theorem
6.12, states that if a triangle-free graph contains a set of at most four
edges whose deletion results in a planar graph, then it is 4-choosable.

Given this it is natural to ask the following question.

Question 1.0.2. If a graph does not contain Kg as a subgraph and can

be made planar by deleting three edges, is it 5-choosable ?

In the same paper [7], Erman, Havet, Lidicky and Pangrac also proved
that if a K4-free graph has a drawing in the plane in which no two crossings
are dependent, then it is 4-colourable (Theorem 6.11). There has been
more research in the relationship between the independence of crossings
and chromatic number. In this respect Albertson conjectured that if a
graph can be drawn in the plane such that all its crossings are indepen-
dent, then its chromatic number is at most 5. He proved in 2008, [1],
that this is true for graphs of crossing number at most 3. Wenger [15]
extended Albertson’s result to graphs with four crossings. Later in 2010,
Kral’ and Stacho proved the conjecture for any number of independent
crossings [8].

It is also natural to try to extend or prove analogues of those results

for list-colouring.



Chapter 2

From 5-Choosability to Inner
4-Lists

2.1 The Problem

The goal of this thesis is to prove the following theorem.

Theorem 2.1.1. Let G be a graph. If there are edges e; and ey such that
G — {ey1, ea} is planar, then G is 5-choosable.

In this chapter, we reduce the problem to that of list-colouring a plane

graph G’ containing either

(1) two inner 4-lists, each of which is the centre of a wheel attached to

the outer walk of G/ or

(2) two outer (that is on the outer walk) 2-lists and one inner 4-list that
is not the centre of a wheel attached to the outer walk of G’ (but

still may be the centre of a wheel).

In case G’ is as in (1), we colour it by Proposition 2.1.2 stated below,
and in case it is as in (2), we colour it by Theorem 2.1.3 stated below.
Notation: For a plane graph G, let G denote the subgraph of G con-

sisting of those vertices and edges incident with the infinite face.

5



Proposition 2.1.2. Let G be a plane graph and let x and y be two inner
vertices of G that are the centres of wheels W1 and Wy, respectively, in G.
Suppose that, fori € {1,2}, V(0W,;) C V(0G). Let L be a list assignment
such that:

(a) for everyv € 0G, |L(v)| > 3;
) L)) = |L(y)| = 4; and
(c) otherwise, |L(v)| > 5.

Then G is L-colourable.

Theorem 2.1.3. Let G be a plane graph and let u and w be two vertices
in 0G. Suppose that x is an inner vertex of G such that, if x is the centre
of a wheel W in G, then V(OW) € V(0G). Let L be a list assignment of
G such that:

(a) |L(x)] = 4;
(b) |L(u)] = 2 and |L(w)| = 2;
(c) for every v € V(0G) \ {u,w}, |L(v)| > 3; and
(d) otherwise, |L(v)| > 5.
Then G s L-colourable.

Proposition 2.1.2 is proved in Section 4.2, and Theorem 2.1.3 is proved

in Section 4.4.

2.2 Reducing the problem to plane graphs

In this section, we explain how to find an appropriate plane subgraph G’
of G with list-assignment L’ for G’ satisfying either Proposition 2.1.2 or
Theorem 2.1.3. An L’-colouring of G’ will yield the desired colouring for
G.

We start with a minimum counterexample GG to Theorem 2.1.1 and

choose two edges e; and es of G so that G — {ej, ex} is planar and L is a
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Figure 2.1: v; is in Vp and is adjacent to one more vertex other than u,

in Q).

5-list-assignment of G for which G has no L-colouring. The main effort is
to find a suitable shortest path @ in G — {e1, ez} from a vertex incident
with e; to a vertex incident with es. We obtain G’ by deleting all or all
but one end of @ from G.

Definitions of G/, Q, uy, uz, vy, and va:

For i = 1,2, let ¢; = w;v;. Fix an embedding of G — {ey, e5} in the
plane. Let @ be a shortest {uy,v;}{ug,v2}-path in G — {e1, e}, and
set G' = G —V(Q). Clearly @ is contained in one face F' of G'. Let Vg
denote the vertices of the boundary of F. See Figure 2.1. We may assume
without loss of generality that () is a path between u; and us.

For a vertex v, let N(v) denote the set of neighbours of v in G. We

show the following.

Proposition 2.2.1. There is an L-colouring ¢ of Q) such that for every
vertex v in Vp, |L(v)\{p(z) | z € V(Q) N N(v)}| > 3. In particular, for
i = {1,2}, if the end v; of e; that is not in Q is also not on the boundary

of F', then it has at least four available colours.

Note that if v (or vy) is not in Vg, then its only neighbour in V(Q) is
uy (or respectively us), and so it has a list of size at least 4 after deleting

the colours of its neighbours in () from its list.
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To prove that such a colouring of () exists, first note that we may
assume that |V(Q)| > 3 since otherwise every vertex in Vp has at most
two neighbours in () and so still has a list of size at least 3. More generally,
a vertex v in Vg cannot have two neighbours at distance 3 or more in @),
as otherwise there is a shorter path in G' from u; to us. We summarize

this as follows.

Observation 2.2.2. Any vertex v in Vg has at most three neighbours in
Q and the distance in Q) between any two of its neighbours is at most 2.
In particular, if v has three neighbours in @), then those three neighbours

are consecutive in Q).
Let Q@ = uy2z1 - - - z,us, and rename u; as zg and uy as z,,1. Then,

Observation 2.2.3. For every k € {0,1,--- ,n}, the only vertex in

{20, , 21} adjacent to zxy1 is z.

We need the following two lemmas frequently in the thesis, Lemmas
2.2.5 and 2.2.6. They are about extending the colouring of a cycle of
length at most four to the interior of the cycle when the interior contains
one 4-list. Such a colouring is extendable unless the cycle has length four
and the 4-list is adjacent to all the vertices of the cycle.

The proof of those two lemmas needs Theorem 4.3.1. However, the
proof of Theorem 4.3.1 itself requires the proof of the claim that, for
minimum counterexamples, there are no triangles with nonempty interior
and no 4-cycles that contain vertices other than the 4-list in their interior.

The proof of that claim is literally the same as the proofs of the two
lemmas combined except for the reference to Theorem 4.3.1. In the proofs
of the lemmas we refer to the theorem generally while in the proof of
the claim we refer to the theorem as an induction hypothesis valid for
the interiors of the cycles, which are smaller subgraphs than a minimum
counterexample.

Thus, to avoid writing the same proof twice, and to avoid vicious
circles, we write the statements of the lemmas below with the premise

“If Theorem 4.3.1 is true”. Actually we use a special case of Theorem



4.3.1, which we state below as Proposition 2.2.4, and so you will find “ If
Proposition 2.2.4 is true” in the statements of Lemmas 2.2.5 and 2.2.6.
In this way we can refer to those lemmas in the proof of Theorem 4.3.1

as well as outside it.

Proposition 2.2.4. Let G be a plane graph, z a vertexr in 0G, and x a
vertex in G — V(0G). Let L be a list assignment such that:

(a) L(z) is a singleton;
(b) for every v € V(0G) \ {z}, |L(v)| > 3;
(¢) |L(x)| > 4; and
(d) otherwise, |L(v)| > 5.
Then G has an L-colouring.

Lemma 2.2.5. Let H be a plane graph such that OH is a triangle and
let x be a vertex of H—V(0H). Let ¢ be a colouring of OH and let L be

a list assignment on H such that:
(a) for every vertex v of OH, L(v) = {p(v)};
(b) for every vertex v of H— (V(OH)U{z}), |L(v)| > 5; and
(¢) [L(z)] = 4.
If Proposition 2.2.4 is true for H — V(0OH), then H has an L-colouring.

Proof. Let H be a minimum counterexample. We may assume that there
is no vertex in the interior of OH adjacent to all the vertices of 0H.
If there is such a vertex, we can colour that vertex then by minimality
extend the colouring to the interiors of each one of the three triangles it
creates with its adjacencies.

Delete from the lists of the vertices in the interior of 0H the colours
of their neighbours in dH. We colour the interior of 0H with this new

list assignment as described below.



Since every vertex in the interior of 0H is adjacent to at most two
vertices in 0H, every vertex in the outer walk of a block in H — V(0H)
has at least three colours in its list, except for x, which may have a list
of size two. Thus, any such block is colourable either by Thomassen’s
Theorem 3.2.6 or by Proposition 2.2.4 as a start.

Now we describe how the colouring proceeds. Start by colouring a
block containing x by Proposition 2.2.4 or Theorem 3.2.6 of Thomassen,
depending on whether x is an inner vertex of the block or on its outer
walk. Then move to colour an uncoloured block containing an already
coloured vertex by Theorem 3.2.6 of Thomassen. This shows how to
colour a component containing z.

To colour a component not containing x, we can start by colouring any
block in the component and then move to an uncoloured block containing
an already coloured vertex.

Note that we should not move from a coloured block to one that has
no coloured vertices in the same component since then when we return to
colour an adjacent block to the first block, it has two coloured vertices.

O

Lemma 2.2.6. Let H be a plane graph such that OH is a 4-cycle and let
x be a vertex of H—V(0H). Let ¢ be a colouring of OH and let L be a

list assignment on H such that:
(a) for every vertex v of OH, L(v) = {p(v)};
(b) for every vertex v of H— (V(0H)U{x}), |L(v)| > 5; and
(c) |L()] > 4.

If Proposition 2.2.4 is true for H — V(0H), and x is not adjacent to all
the vertices of OH, then H has an L-colouring.

Proof. If H — V(0H) does not contain a block containing = as an inner
vertex that contains two vertices each adjacent to three vertices of C, we
colour H—V (0H) as follows. Start by colouring a block containing = and

then move to an uncoloured block containing an already coloured vertex.
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In colouring the different blocks we use Theorem 3.2.6 of Thomassen,
Theorem 3.2.7 of Compos and Havet, or Proposition 2.2.4.

Now we show how to colour a block with two vertices each adjacent to
three vertices of C'if it contains = as an inner vertex. This is the same as
colouring a plane graph with two 2-lists on the outer cycle, all the other
lists on the outer cycle are 4-lists, one inner 4-list, and all the other inner
lists are 5-lists.

There are two possibilities. If one of the 2-lists is not in any chord of
the block, we can colour it, delete it, then colour the smaller block, which
has only one vertex with less than three colours on its outer cycle (and
so is colourable by Proposition 2.2.4). If both 2-lists lie on chords of the
block, colour the vertex that has a 2-list on that chord (or one of them if
the chord has the two 2-lists as its end-vertices), delete it, then colour the
smaller blocks, moving from a block to an adjacent one, using Theorems
3.2.6, 3.2.7. O

We also need the following lemma for the proof of Proposition 2.2.1.

Lemma 2.2.7. If T is a separating triangle in G — {eq, ez}, then each
of e1 and ey has one end-vertex in the interior of T and the other in its

exterior.

Proof. Suppose for a contradiction that there is a separating triangle in
G — {e1, e2}, and note that a separating triangle in G — {ej1, e} may, in
G, have one of its edges crossed by either e; or es.

Let T be a separating triangle in G — {e1, ex}, and let G; and G4 be
the subgraphs of G induced by V(T") and the vertices in the exterior and
the interior of 7. Choose the labeling so that G; contains at least as
many of e1,e5 as G does. Furthermore, we may assume that, if either e;
or ey is contained in either of GGy or GG, that e; is contained in G.

Recall that G is a minimum counterexample to Theorem 2.1.1. There-

fore, we can colour G; by minimality. We have the following cases:

(a) ey and ey are both contained in Gy.
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The subgraph G, —V/(T) is planar and there is at most one vertex in
it that is adjacent to all the three vertices of T'. After deleting from
the list of every vertex v of Gy — V(T') the colours of the vertices in
N(v)NV(T), Thomassen’s Theorem 3.2.6 shows Gy — V(T') has an
L-colouring extending that of GG to all of G.

ey 15 contained in G1 but ey 1s not contained in any of Gy or Gs.

Since e, is not contained in any of GGy or G5, it does not have an end-
vertex in 1. Assume without loss of generality that the end-vertex
of e in V(G1) — V(T) is ug and the end-vertex in V(Gq) — V(7)) is
ve. Delete from L(vg) the colour of uy. Then now we have a coloured
triangle with interior (or exterior) consisting of vertices that have
lists of size at least 5 except for one vertex that has a list of size
at least 4. The interior of such a triangle is colourable by Lemma
2.2.5.

ey 18 contained in G1 and ey is contained in Gs.

In this case there are at most two vertices of {uy, us,v1,v2} in the
interior of T. Let z and w be two vertices of {uy,us,v1,v2} in the
interior of T'. Note that each of z and w still has a list of size at
least 4 after deleting the colour of its neighbour in the subgraph

induced by the two edges e; and es.

Since in this case there is symmetry between G; and G5, we may
assume without loss of generality that G; is the subgraph induced
by the vertices in the exterior of 7" and V(7).

We may also assume that 7' does not contain any other separating
triangles. Therefore, if there is a vertex in the interior of T' that is
adjacent to all the three vertices of T, then it is the only vertex in
the interior of T". In this case the interior of 7' is colourable as this
vertex has in its list a colour different from the colours of the three
vertices of V(T') and the colour of its possible unique neighbour in

the exterior of T'.

Therefore, we may assume that every vertex in the interior of T is
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adjacent to at most two vertices in V(T'). Delete from the lists of
the vertices in the interior of 1" the colours of their neighbours in
(G1. Then every vertex in the interior of 7', including z and w, has
a list of size at least three. This is true for z and w because they
have no neighbours in the exterior of 7. If any of z and w has a
neighbour in the exterior of T, then one of the edges of T' is e; or e,,
but this returns us to part (a) where the two edges are contained in
Gi.

Now we can extend the colouring to the interior of T" by Theorem
3.2.6 of Thomassen.

We have shown that we can colour G in all the cases, and so we have a

contradiction. O

2.2.1 Colouring vertices in Q

Here we prove Proposition 2.2.1.

Proof. Recall that Q = 2921 --- 2,2,41, Where 2p = uy and 2,11 = us.
Colour zy by any colour ¢(zp) in L(zp) and then colour z; by any colour
©(z1) in L(z1) \ {¢(20)}. Suppose that, for some k € {2,3,--- ;n+ 1},
©(z0),(21), -+ ,p(2k—1) are defined. For k < n+ 1, let Ry = Vp U
{Zks1, ", Zns1}, and let R, = Vp. For a vertex v, let By(v) be the
list obtained from L(v) by deleting the colours of the neighbours of v
in {z0,21, -+ ,2k-1}. We show below by induction on k that we can
choose the colour ¢(z) € By(zr) (=L(zx) \ {¢(zk-1)}) in such a way that
| By1(v)| > 3 for every v € Ry.

We have the following two cases.
Case 1. No vertex of Ry, has three neighbours in {zo, -+ , 21 }.

Then |By41(v)| > 3 for allv € Ry, regardless of how we define ¢(z). In
particular, if a vertex v € Ry, is adjacent to three vertices in {z, -+ , zx_1}

or to at most two vertices in {zg,- -, 2x_1, 2k}, then, regardless of how
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we define ¢ (z;), | By (v)] = 3.

Case 2. There is a vertex y in Ry, that has three neighbours in {zo, - , zx}.
If y is adjacent to three vertices in {zg,- -+ ,2,_1}, then Observation
2.2.2 shows that those are all the vertices it is adjacent to in {2q, - , zx_1, 2k }-

Then, Byy1(y) = Bk(y) and this has at least three colours by the induc-
tion hypothesis.

Therefore we may assume that y is adjacent to z,. Again by Obser-
vation 2.2.2, this means that the neighbours of y in Q) are z;_», zx_1 and
2. By planarity of G — {e, e}, and since no end vertex of e; or ey is
adjacent to three vertices in @), there is at most one other vertex w such
that w is adjacent to z,_s, 2zx_1 and z;. We show we can have one of the

following:

(1) a recolouring of z_; and a colour for zj such that every vertex still

has at least three colours, or

(2) a rerouting of @) so that there is at most one vertex adjacent to

Zk—2, Zk—1, and zj.

For (1): We go back to the step where we were to colour z;_;. Each of
y and w is adjacent to only zx_o, 21 and z; in @, therefore, the only
coloured neighbour of y and w at this step is zx_o. Thus, each of y and
w still has four available colours.

If L(y) \ {e(ze-2)} = Llze-1) \ {#(2-2)} = L(w) \ {o(z-2)} = S,
then colour z; by a colour from L(z;) \ S. With this colouring, each of
Y, zk—1 and w still has four available colours. Thus, regardless of how we
colour z;_1, each of y and w will have three available colours.

If L(z1) \ (5 2)} # L)\ {o(ze)} or Lizen) \ {24 2)}
L(v)\ {¢(2k_2)}, then there is a colour ¢ in L(z;_1) \ {©(zx_2)} such that
cither |L(y) \ {(24-2),cH| = 4 or [L(v)\ {ip(z0-2),c}| = 4.

Suppose without loss of generality that |L(y)\{¢(zk—2), c}| > 4. Then
colour z;_q with . If |L(v) \ {¢(zx—2), c}| = 3, then there is a colour d in
L(z) \ (L(v) \ {¢(zk-2), c}). Colour z with d.

14



)T

Zk—2

w

Figure 2.2: The vertices w,, = w and y are adjacent. The dashed lines
are parts of (), and the thick edges are e; and es.

Now we need to show that every vertex still has a list of size at least
three after this recolouring of z;_;. We have already shown this for y
and w, and clearly this holds for any vertex adjacent to at most two
vertices in zg,--- , 2k_1, 2k, and for any vertex adjacent to three vertices
in zg, -+, 2zx_2. The only possible obstruction for this is a vertex adjacent
10 23, Zk—2, Zk—1-

For (2): Consider the longest sequence wy - - - wy, of vertices such that:
(i) wy = w;
(ii) fori e {1,--- ,m}, w; # y; and
(iii) for every i, w; is adjacent to zx_o, w;—1 and z,
If v, is not adjacent to y, then replace zx_s21_12k by 2p_ow,, 2k in Q.
Now that there is only one vertex adjacent to the three vertices in this
part of (the new) @, namely v,, ; is adjacent to zx_2, v,,, and zj, we can
choose the colour of z; to be the unique colour in L(zy) \ L(w,,—1) Recall
that after colouring v, (the new z,_1), |L(2x)| = 4 while |L(wy,—1)| = 3.
Thus v,, and y are adjacent, then there is no clear way for rerouting

() that will make (2) satisfied. See Figure 2.2. However, we can reroute

() such that (1) is satisfied.

15



Note that the subgraph induced by vy, zx_o, 2x_1, 2k, W, W1, - - - Wy, is &
plane graph with every face bounded by a triangle. By Lemma 2.2.7, the
end-vertices of e; and ey are in exactly two of those triangles, T} and T5.
Since there are no separating 4-cycles that have all the end-vertices of e;
and ey on one side, 77 and T, intersect in at most one vertex. Also for
the same reason m is at most 3, and if 77 and 75 are disjoint, then they
are distance one apart.

There are a few cases for which triangles are T} and 75, with the three
possible values for m. In each of those cases it is not hard to show there
is a rerouting of () such that: if there is a vertex adjacent to zx_3, zx_2,
and zx_; (the new one), then either there is a crossing avoiding e; and eo,
or there is a shorter path than Q). Then, since G — {ej, €2} is embedded
in the plane, there is no vertex adjacent to zx_3, 2x_2, and zx_1. This was
the only problematic situation for (1).

For example, in Figure 2.2, if we replace z,_szr_12r by zr_swzi in Q,
then by planarity, the only vertex that can be adjacent to all of z,_3,
Zk—9, and w is z,_1. This gives a shorter path than () as we can replace
2k—32k—22k—1 DY Zk—32K—1.

]

2.2.2 Colouring G’

To know whether we can colour G', defined in Page 7, after colouring @
as described above and deleting the colours of V(@) from the lists of their

neighbours, we need to know the answer to the following question.

Question 2.2.8. Let H be a plane graph and let x and y be two distinct
vertices in V(H) \ V(OH). Let L be a list assignment such that:

() |L(z)| = [L(y)| = 4
(b) for every vertex v € OH, |L(v)| > 3; and
(c) otherwise, |L(v)| > 5.

Does H have an L-colouring ¢
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We do not know the answer to this question. However, in Section 4.1,
we prove Proposition 2.1.2, which states that it is true in the special case
that each of x and y is the centre of a wheel attached to the outer walk
of H.

So we may suppose that in G’ at least one of v; and v, is not the
centre of a wheel whose outer cycle is attached to the boundary of F'. We
may assume without loss of generality that v, satisfies this. This includes
also the case when v; is in Vz.

In this case, with a slight modification described below to the colouring
of ) described above, we come to a list assignment L’ of G’ such that,

for some two vertices w; and wq in Vg:
(a) if vy & Vg, then |L'(vy)| > 4;
(b) for every v € Vg \ {wy,ws}, |L'(v)| > 3; and
(¢) [L'(w1)| = 2 and |L'(wy)] = 2,

Theorem 2.1.3 states that G’ is L'-colourable, and is proved in Section
4.4.

Let us for the moment call the situation when, in a plane graph, the
vertices on its outer boundary have 3-lists and the other vertices have
5-lists, the primary situation. A plane graph in the primary situation is
known to be colourable by Thomassen’s Theorem 3.2.6.

Note that in the list assignment of Question 2.2.8, the total number
of colours lost from the primary situation is 2, one lost at = and one lost
at y. In the list assignment L’ (above), the total number of colours lost
is 3 (in case v; ¢ Vr). However, the question of L'-colourability of G is
less difficult than that since we added the condition that the unique 4-list
vertex (if exists) is not contained in a certain structure (not the centre of
a wheel attached to the boundary of F).

The conclusion of this short comparison between those two list colour-
ing problems, Question 2.2.8 and Theorem 2.1.3, is that those two prob-
lems almost have the same rank of difficulty. One reason why we found

the latter easier is that there is a ready proof to try to make an adaptation
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of, that is the proof of Theorem 3.2.8 of Postle and Thomas for which
Theorem 2.1.3 is an extension.

Now we show how to come to the list assignment L' of G with the
properties mentioned above.

Colour () as described above, and then uncolour us. Now us has four
available colours, since by Observation 2.2.3, the only neighbour of us in
Q is z,. Also vy still has five colours if it is not in V.

Note also that at most two of the neighbours of us on the boundary of
F have neighbours in @) other than uy (because G — {ey, €2} is embedded
in the plane).

This means that for all neighbours y of uy on the boundary of F,
except possibly two, |B,11(y)| > 5. If v € Vp is adjacent to uy and other
vertices in (), we know from the construction in the proof of Proposition
2.2.1 that |By1(v)| > 3.

Let w; and ws be two vertices in Vg such that |B,,1(wy)| > 3 and
|Bpy1(wa)| > 3. For every ¢ € {1,2}, let a; be a colour in By, 1(uz) \
By i1 (w;) if | Byy1(w;)| = 3, and let it be any colour in B, 1(uz) otherwise.
If a; # as, let S = {ay,as}, and if a; = ay, let b be any colour different
from a; in By, 41(ug), and let S = {aq, b}. In any case, for every i € {1, 2},
either | By,41(w;)| > 4 or there is at most one colour in S N By (w;).

Therefore, if we delete the colours in .S from the lists of the neighbours
of uy different from vy, we have at most two 2-lists on the boundary of F.
All the other vertices on the boundary of F' have 3-lists and L(vs) is still
a b-list.

Now since vy is not the centre of a wheel whose outer cycle is attached
to the boundary of F', there is a colouring ¢ of G’ by Theorem 2.1.3 if it

is true. Then colour uy with a colour in S\ {¢(v2)}.
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Chapter 3

Preliminaries

3.1 Introduction

Our extension Theorem 4.3.1 of Thomassen’s Theorem 3.2.4 asserts that
as long as there is no exceptional configuration, G' has an L-colouring.
Although our result has more exceptions, Thomassen already had to deal
with some. Fortunately, ours are also ‘wheel-like’ structures that attach
to the outer boundary.

The purpose of this chapter is to thoroughly analyze the exceptional
configurations that occur in Theorem 4.3.1.

We begin by recalling the main results of Thomassen, Compos and
Havet, and Postle and Thomas. Then we introduce Thomassen’s excep-
tions, the ‘generalized wheels’. We will need a complete understanding of
the list assignments L of these exceptions that do not yield L-colourings.
The most basic and important example is a ‘broken wheel’, which is fully
analysed in Section 3.2.

In Section 3.3, we discuss material from Postle [10] that gives us as a
direct consequence the ability to extend a single pre-coloured vertex on
the outer walk of a plane graph to a complete colouring of the graph.
Here it is important to show that we can do so to avoid a particular
colouring of some other path of length one that is also on the outer walk.
The avoided colouring is one that does not extend to a colouring of some

generalized wheel in the original graph. This combines with the analysis
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U1
U2 Vg 01

Vg U1 Vg

Figure 3.1: generalized wheels with principal path vov,vy.

of the generalized wheels to show that there is always an extension to the

whole graph.

3.2 Wheel-Like Structures

In this section we introduce a number of wheel-like structures that appear
as exceptions to colouring. We recall several previous results concerning
list colourings of plane graphs, culminating in our Lemma 3.2.11. This
result completely determines the list assignments L of a broken wheel W
for which there is no L-colouring of W.

Thomassen [13] provided the first example of a theorem of the form
‘either there is an L-colouring or there is an exception’. This is the model
for our Theorem 4.3.1 and is used repeatedly in our proofs. We state his

theorem below after the following relevant definitions.

Definition 3.2.1. [13] (Broken Wheel) A broken wheel is a graph that
consists of a cycle C' = vjvy---vgv; and, for all ¢ = 3,4,--- |k — 1, the
edge viv;. The vertex vy is called the major vertex and the path vov vy

is called the principal path of the wheel.
See Figures 3.3, 3.4, and 3.5 for examples of broken wheels.
Definition 3.2.2. The broken wheel is even or odd if the length of its

outer walk is even or odd, respectively.
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Definition 3.2.3. [13] (Generalized Wheel) A graph G is a generalized
wheel with principal path uvw if G is either a wheel, a broken wheel, or
the union of two generalized wheels G; and G5 with principal paths uvz

and zvw, respectively, such that G7 N G5 is just the path vz.
See Figure 3.1 for examples of generalized wheels.

Theorem 3.2.4. (Thomassen [13]) Let G be a plane graph such that OG
1s a cycle vivg - - - vv1. Let ¢ be a colouring of P := vyvivg, and let L be

a list assignment such that:
(a) forie{1,2,k}, L(vi) = {p(vi)};
(b) forie{3,4,---  k—1}, |L(v;)| > 3; and
(c) otherwise, |L(v)| > 5.
Then either G has an L-coloring or G contains a subgraph G' such that:
(1) G’ is a generalized wheel with principal path P;
(2) V(0G") C V(0G); and
(3) for allv € V(OG") \ V(P), L(v) is of size exactly 3.

From generalized wheels we define another wheel-like structure that
we call a wheel of wheels. The notion of double bellows introduced in [10,

P. 51] includes some, but not all, of our wheels of wheels.

Definition 3.2.5. (Wheel of Wheels) A graph G is a wheel of wheels if
it is obtained from two generalized wheels by identifying their principal
paths. The special case when one of the two generalized wheels is a broken

wheel and the other one is a wheel is called a double-centred wheel.

See Figures 3.2, 4.3, and 4.6 for examples of wheels of wheels.

In his breakthrough 1994 paper [12] proving 5-choosability of planar
graphs, Thomassen introduced what is now the standard approach to
proving other 5-list-colouring theorems for planar graphs. He proved it

by proving the following stronger theorem.
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V11

V10

U7

Figure 3.2: A wheel of wheels with centre y and three sections, a broken
wheel and two wheels with centres w and z

Theorem 3.2.6. (Thomassen [12]). Let G be a plane graph and P = vjv,
a path of length one contained in OG. Let L be a list assignment for G
such that:

(a) for allv € V(G)\ V(0G), |L(v)| > 5;

(b) for allv e V(OG)\ V(P), |L(v)| > 3; and

(¢) L(vy) and L(vs) are unequal singletons.
Then G s L-colourable.

In 2011, Compos and Havet [4] proved a variation of Thomassen’s

result in which the vertices with singleton lists are not adjacent.

Theorem 3.2.7. (Compos and Havet [/]) Suppose G is a plane graph and
x, y and z are three distinct vertices in OG. Let L be a list assignment
such that:

(a) for allv € V(G)\ V(0G), |L(v)| > 5;
(b) for allv e V(0G) \{z,y, 2z}, |L(v)| > 4;
(¢) L(z) # L(y), |L(2)| = 3; and

(d) L(z) and L(y) are singletons that are unequal in case x and y are

adjacent.

22



Then G is L-colourable.

In 2015, Postle and Thomas published the following theorem which
solves the situation when there are two lists of size 2. This theorem
implies Theorem 3.2.6 of Thomassen. It is also one of our main tools. We
introduced an extension of this theorem, Theorem 2.1.3, that we need for

the proof of the main theorem of this thesis.

Theorem 3.2.8. (Postle and Thomas [11]) Let G be a plane graph, and
let v1 and vy be distinct vertices in OG. Let L be a list assignment for G
such that:

(a) for allv € V(G)\ V(G), |L(v)| > 5;
(b) for allv € V(OG)\ {1, va}, |L(v)| > 3; and
(¢) |L(wn)| = |L(uz)| =2.

Then G is L-colourable.

We will prove in Lemma 4.2.1 an analogue of the following lemma of
Thomassen [13]. In our case we need one inner 4-list and non-extendable

colourings of a path of length one.

Definition 3.2.9. Let H be a subgraph of a graph GG, L a list assignment
of G, and ¢ an L-colouring of H. The colouring ¢ is good if it is extendable

to an L-colouring of G and bad otherwise.
The following lemma is a rephrasing of [13, Lemma 1].

Lemma 3.2.10. Assume G is a generalized wheel that is not a broken
wheel, with outer cycle C' : vivy - - - vvy. Let L be a list assignment of G
such that:

(a) for allv e V(G)\ V(C), |L(v)| > 5; and
(b) for allv e V(C), |L(v)| > 3.

Then there is at most one coloring of the path vyv vy that cannot be ex-

tended to an L-coloring of G.
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U1

U1
V2 (e
V2 Vg
V3 Vg
v3 Us V4 Us
o L(vy) = {1},
L(U1> - {1}7 L<U2) - {3}7
L(U2 = {3}7 L(U3) = {172v3}7
L(U?)) = {17273}’ L(U4) = {17273}a
L(vy) = {1,2,3}, L(vs) = {1 2,3},
L(vs) = {1,2,3} and L(vs) = {1,2,3} and
L(vs) = {2}. L(vr) = {2}.
Figure 3.3: All Figure 3.4: All the
colourings of  the colourings 1,21,
principal path that 17 37 ]-7 27 17 27 27 37 27
are permutations of 3,1,3 and 3,2,3,
{1,2,3} are unex- of  the  principal
tendable while all path, are unextend-
the colourings 1,2,1, able while all the
1,3,1, 2,1,2, 2,3,2, colourings that are
3,1,3 and 3,2,3 are permutations of
extendable. Note {1,2,3} are extend-
that the outer cycle is able. Note that the
even. outer cycle is odd.

Lemma 3.2.10 is about generalized wheels that are not broken wheels.
Here we prove the following lemma about the unextendable colourings of
the principal path of a broken wheel.

When we say that abc is a colouring of the path wjusus or that the
path ujusus is coloured abc we mean that wy, us, and ug are given the
colours a, b, and ¢, respectively. Now, when a, b, and ¢ are different, we

can regard the colouring abc as a permutation of {a, b, c}.

Lemma 3.2.11. Let W be a broken wheel with outer cycle vivs - - - viv;

and principal path P = vovyvy, and let L be a list assignment of W such
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U1 U1

L(v) = {2}, L(v1) = {4},
L(vg) = {1}, L(vy) = {1},
L(vs) = {1,2,4}, L(vs) = {1,2,4},
L(vg) = {2,3,4} and L(vy) = {2,3,4} and

L(vs) = {3}. L(vs) = {3}.

Figure 3.5: The only difference between the two list assignments is the
colour of the middle vertex of the principal path. Both colourings of the
principal path are unextendable.

that, for every i ¢ {1,2,k}, L(v;) > 3. If there is more than one bad
colouring for P, then all the bad colourings are from one of the following

five cases.

(1) They are all the permutations of a fized 3-set S. In this case, W is
even, all the lists are equal to S, and all the colourings of P of the

form aba with a and b having values in S are good.

(2) They are all the colourings of P of the form aba taken from a fized
3-set S. In this case, W 1is odd, all the lists are equal to S, and all

the colourings of P that are permutations of S are good.

(8) They are two colourings cae and cbe that agree on vy and vy but

give vy different colours.

(4) They are two colourings abe and bae that give vy the same colour
and alternate the colours of vo and vy, or they are two colourings
cab and cba that give vy the same colour and alternate the colours

of v1 and vy.
(5) They are two colourings aba and bab.
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Proof. We start with a helpful claim.

Claim 3.2.12. If there is a bad colouring for P, then all the lists of
vs, - ,Up_1 are of size exactly three and every colour of vy involved in a
bad colouring of P is contained in all those lists. Consequently, at most
three colours of vy are involved in bad colourings of P. Moreover, if

and ¢’ are distinct bad colourings of P such that ¢(v1) = ¢'(v1), then
p(v2) # ¢'(v2) and @(vi) # ¢ (vr).

Proof. Let ¢ be a bad colouring of P and suppose that P is coloured
with . Colour the vertices from vz in ascending order of indices. If some
vertex v; has two colours in its list that are both different from the colours
of its coloured neighbours we can stop colouring at this point then start
colouring from v;_; in descending order of indices. Then v; is colourable.

Therefore when P is coloured with ¢, in colouring from vz in ascending
order of indices, each vertex v; is forced to be coloured by the unique
colour in its list different from the colours of v; and v;_;. Similarly, in
colouring from v;_; in descending order of indices, each vertex v; is forced
to be coloured by the unique colour in its list different from the colours
of vy and v;41.

Thus, if there is a bad colouring for P, then all the lists of v, -+, vp_4
are of size exactly three, and every colour of v; involved in a bad colouring
of P is contained in all those lists. Therefore, at most three colours of v;
are involved in bad colourings of P.

Suppose ¢ and ¢, are colourings of P that agree on vy, vy, but differ
on vy. Starting with v,_1, all the vertices will have their colours forced in
both colourings. Thus, at most one of ¢; and ¢ can be bad.

Similarly, if two colourings of P agree on the colours of vy, v but differ

on vy, then at most one of them is bad. O

Now, we have the following cases.

Case 1: There are three colours of vy involved in bad colourings.
Let a, b, ¢ be the three colours. Then all the vertices vs, - -+ ,v,_1 have

the same list S := {a,b, c}. Any colouring that gives vy a colour not in S
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is good since we can colour the vertices from v;_; in descending order of
indices and then v3 is colourable since the colour of one of its neighbours,
namely vq, is not in L(vz). Similarly any colouring that gives vy a colour
not in S is good. Therefore, all the bad colourings give vy, v; and vy
colours from S.

Now consider any colouring of P with colours from S. We may sup-
pose without loss of generality that v, is coloured a and vy is coloured b.
If we colour the vertices from v3 in ascending order of indices, the vertices
with an odd index are coloured ¢ and the vertices with an even index are
coloured b. Therefore, if W is even, then the colouring bab is good and the
colouring bac is bad; this is (1). However, if W is odd, then the colouring

bab of P is bad and the colouring bac is good; this is (2).

Case 2: P has more than one bad colouring and at most two colours
of v1 are involved in bad colourings of P.

Let ¢ and ¢ be two bad colourings of P. We show that ¢(v1) # ¢'(v1).
Suppose for a contradiction that ¢(v1) = ¢'(vy). Then by Claim 3.2.12,
o(va) # ¢'(ve) and p(vg) # ¢'(vg). Suppose that ¢ and ¢’ are bjacy
and byacy respectively. Since both bjac; and byacy are bad colourings,
L(vs) = {a,by,bo} and L(vg_1) = {a,c1, ¢}

By considering colouring from w3 in ascending order of indices in both
cases, when P is coloured bjac; and byacy, we find, since both colourings
are bad and the colour of each v; is forced by the colour of v;_ 1, that all
the lists are equal to {a, by, by}. Therefore, {by, by} = {c1,co} = {c, b} for
some b and ¢, p and ¢’ have values in the 3-set S := {a,b,c} and all the
lists are equal to S.

Now it is not hard to see that, depending on the parity of W, either
all the permutations of S are bad colourings of P or all the colourings
of the form OAf taken from S are bad colourings of P. In either case
this means that there are 3 colours of v; involved in bad colourings of P.
This contradicts our assumption that there are at most two colours of v;

involved in bad colourings of P.

We conclude there are exactly two bad colourings ¢ and ¢ of P and
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that ¢(v1) 7 ¢'(v2).

Let a and b be the two colours of v; involved in bad colourings of
P and suppose that ciae; and cobey are the two bad colourings. Since
L(vs) contains both a and ¢; as well as b and ¢y, L(vs) = {a,b,c} for
some ¢ ¢ {a,b}, (c2 = cor ¢y = a) and (¢; = b or ¢; = ¢). Similarly,
L(vg—1) = {a,b,e} for some e ¢ {a,b}, (e =bor e; =¢) and (e3 = a or
e = e). Note that ¢ and e may be equal.

Thus the different possibilities of the two bad colourings can be viewed
as the elements of {cae, bae, cab, bab} x {cbe, cba, abe, aba} (that is, the two
bad colourings may be one of the 16 pairs in this Cartesian product). The
ones that belong to one of the cases in the statement of the theorem are
(cae, cbe), (bae,abe), (cab,cba), and (bab,aba). Those are respectively
cases (3), (4), (4), and (5) in the statement of the Lemma.

We can partition the remaining possibilities of the two bad colourings

into groups as follows (in all four cases {6, A\} = {a,b}):

(i) either vy or v has the same colour in both colourings, that is,
{(cae, cba), (cae, abe), (bae, cbe), (cab, cbe)};

(ii) one of the two colourings is of the form #A@ and the other is either
cO or Me, that is, {(bae, aba), (cab, aba), (bab, abe), (bab, cba)};

(iii) one of the two colourings is of the form 66 and the other is cfe,
that is, {(cae, aba), (bab, cbe)};

(iv) one of the two colourings is of the form cfA and the other is O\e,
that is, {(bae, cba), (cab, abe)}.

We can take (cae, cba), (bab,abe), (cae,aba) and (bae, cba) to be repre-
sentatives of each of these four groups, respectively.

Note that all the lists of the vertices vs, - -+ ,v,_1 contain both a and
b. Then, in case P is given a bad colouring that gives vy a colour outside
{a, b}, in colouring from v; in ascending order of indices, the vertices v;
with i odd are forced to be coloured from {a, b} while the vertices v; with

i even are forced to be coloured from outside {a, b}.
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Similarly, in colouring from wv,_; in descending order of indices, the
vertices v; with ¢ of a parity different from that of k are forced to be
coloured from {a, b} while the vertices v; with i of the same parity as k
are forced to be coloured from outside {a, b}.

In case P is given a bad colouring that gives vy a colour in {a, b}, in
colouring from w3 in ascending order of indices, the vertices v; with ¢ odd
are forced to be coloured from outside {a,b} while the vertices v; with i
even are forced to be coloured from {a,b}.

Similarly, in colouring from v;_; in descending order of indices, the
vertices v; with ¢ of a parity different from that of k are forced to be
coloured from outside {a, b} while the vertices v; with 7 of the same parity
as k are forced to be coloured from {a,b}.

Now note that there are two consecutive non-equal lists L(v,) #
L(v,41) (since otherwise all the lists are equal and there are three colours
of v; involved in bad colourings). Then L(v,) = {a,b, f.} and L(v,41) =
{a,b, fr41} where f. # f.11. For each group, there are four cases, de-
pending on the parities of £ and r. This requires a total of sixteen easy
checks that at most one of the two colourings is bad, left to the reader.

]

3.3 Avoiding a Colouring

The main result in this section is Corollary 3.3.9. This result shows
we may precolour a vertex and forbid a particular colouring of a path
of length one, both in the outer walk, and still have an extension to a
colouring of the plane graph. This corollary is a simple consequence of
Theorem 3.3.7, below, proved by Postle [10].

Most of this section consists of providing the definitions from [10]
that are needed to state Theorem 3.3.7. The concepts introduced here
are used later in the thesis, in particular to state Theorem 4.3.1, which is

our extension of Thomassen’s Theorem 3.2.4 to allow an inner 4-list.

Definition 3.3.1. (Canvas [10]) A triple (G, S, L) is a canvas if G is a
plane graph, S is a subgraph of 0G, and L is a list assignment of the
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vertices of GG such that:
(a) for all v € V(G) \ V(0G), |L(v)| > 5;
(b) for all v € V(0G) \ V(S), |L(v)| > 3; and
(c) there exists a proper L-colouring of S.

In this definition, it is possible that two vertices of S are adjacent
in G, but not in S. Thus, even if S has a proper L-colouring, it need
not be the case that the subgraph of G induced by V(S) has a proper
L-colouring.

In this work, we allow one vertex in V(G) \ V(0G) to have a 4-list.
This necessitates one more entry in the definition of canvas. We also say
that (G, S, L, x) is a canvas if x is an inner vertex of G' (that is not on its
outer boundary) such that |L(z)| =4 and (G — z, S, L) is a canvas.

We also need a few slightly different notions of ‘subcanvas’, given in

the following definition.
Definition 3.3.2. Let (G, S, L, x) be a canvas.

(a) A canvas (G',S', L', x) is a subcanvas of (G, S, L,x), and a canvas
(G',S', L) is a subcanvas of (G, S, L) or (G, S, L, z) if:

i. G’ is a subgraph of G such that V(0G’) C V(0G);
ii. L' is the restriction of L to the vertices of G’; and
iii. S’ is any subgraph of OG’ that has a proper L-colouring.

(b) A canvas (G',S', L', x) is a semi-subcanvas of (G,S,L,x), and a
canvas (G', 5", L) is a semi-subcanvas of (G, S, L) or (G, S, L, z) if
there is a vertex s € V(9G') not in V(0G) such that:

i. G’ is a subgraph of G such that V(9G’) \ {s} C V(9G);
ii. L' is the restriction of L to the vertices of G’; and
iii. S’ is any subgraph of 0G’ that has a proper L-colouring.

The right drawing of Figure 4.1 shows a broken wheel semi-subcanvas,

namely the graph bounded by xvsvsvsvse.
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(c) Fork € {3,4}, asubcanvas or semi-subcanvas (G', ', L) of (G, S, L, x)
is k-restricted if, for every vertex v in the the intersection of the
outer boundaries of G and G’, but not in S’ |L(v)| < k.

Theorem 3.3.7 below is concerned with interactions of sets of colour-
ings of two paths P and P’ of length one in OG. The set ®(P’,C), of
colourings of P’ that extend to all of G such that the restrictions to P
are in a particular set C, is required to contain a government if C con-
tains a government. Theorem 3.3.7 asserts that, in case C consists of one
colouring, there is only one obstruction - an accordion - to the existence
of such a government for P’. There are no obstructions in case C contains

a government.

Definition 3.3.3. (Government [10]) Let C = {¢1, @2, -+ , ¢}, k > 2,
be a collection of distinct colourings of a path P = p;ps of length one.
For p € P, let C(p) denote the set {¢(p) | ¢ € C}. The collection C is:

(a) a dictatorship if there exists ¢ € {1,2} such that ¢;(p;) is the same
for all 1 < 7 <k, in which case, p; is the dictator of C;

(b) a democracy if k = 2 and ¢1(p1) = @2(p2) and @a(p1) = ¢1(p2); and
(c) a government if it is either a dictatorship or a democracy.

Definition 3.3.4. (Accordion [10]) A graph G is an accordion with ends
distinct paths P, and P, of length one if either:

(a) G is a generalized wheel with principal path P, U Py; or

(b) G is the union G; U G5 of two accordions G; and G with ends Py,
U and U, P, respectively, such that G; N Gy = U.

Definition 3.3.5. (1-Accordion [10]) Let T = (G, P, L) be a canvas where
P is a path of length one and, for all v € V(P), |L(v)| =1 . Let P’ be
a path of length one in 0G. Then T is a I-accordion from P to P’ if
(G is an accordion whose ends are P and P’ and there exists exactly one

L-colouring of G.
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Definition 3.3.6. [10] Suppose that "= (G, P, L) is a canvas such that
P is a path of length one in 0G, and C is a collection of L-colourings
of P. If P’ is another path of length one in dG, then ®¢(F’,C) denotes
the collection of colourings of P’ that can be extended to a colouring ¢
of G such that ¢ restricted to P is a colouring in C. The subscript G is

dropped when the graph is clear from context.

Theorem 3.3.7. [10] Let T = (G, P, L) be a canvas, where P is a path of
length one, and let P' be a path of length one distinct from P. Let C be a
non-empty set of L-colourings of P such that, if |C| > 2, then C contains
a government. Then ®(P’,C) does not contain a government if and only
if T contains a subcanvas T' such that T' is a 1-accordion from P to P’

and C = {p}, where ¢ is the restriction to P of the unique colouring of
T'.

We have the following two corollaries of this theorem. We use the first
in the proofs of Theorem 4.4.2 and Lemma 2.1.2, while we use the second

in the proof of Theorem 4.3.1.

Corollary 3.3.8. Let G be a plane graph, and let P and P’ be two paths
of length one in OG. Let L be a list assignment such that:

(a) for everyv € V(0G), |L(v)| > 3; and
(b) otherwise, |L(v)| > 5.

If there is a government C of L-colourings of P, then there exists a govern-
ment C' of L-colourings of P' such that every colouring in C' is extendable

to a colouring of G whose restriction to P is in C.
Proof. This is a special case of Theorem 3.3.7. [

Corollary 3.3.9. Let G be a plane graph, P = vivs a path of length one
in OG, and z a vertex in V(OG) \ V(P). Let L be a list assignment for
G such that:

(a) L(2) is a singleton,
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(b) for every v € V(0G) \ {2z}, |L(v)| > 3; and
(c¢) otherwise, |L(v)| > 5.

If f is an L-colouring of P, then there is an L-colouring of G such that

its restriction to P is different from f.

Proof. Let a be the colour of z and let y be a neighbour of z in 0G.
Let C be the dictatorship consisting of the two colourings of zy having z
coloured a and y coloured with different colours from L(y)\{a}. Theorem
3.3.7 implies ®(P,C) contains a government. A government contains at
least two colourings, therefore, there is a colouring in ®(P,C) different
from f. m

Postle also proved a similar theorem to 3.3.7 for unions of two gov-

ernments; a confederacy.

Definition 3.3.10. (Confederacy [10]) Let C be a collection of colourings
of a path P = pyps of length one. Then C is a confederacy if C is the

union of two governments but is not a government.

The harmonicas referred to in the following theorem are complicated-
to-describe graphs. We will only use this theorem in the form of Corollary
3.3.12, in which case it is clear that the harmonica exception does not
arise. Thus, it is not necessary for us to know what a harmonica is here.
However, we define harmonicas in the proof of Case 1 of Claim 4.4.11

where we need them.

Theorem 3.3.11. [10] Let (G, P, L) be a canvas and P, P' be paths of
length one in OG. Given a collection C of colourings of P such that C is
either a government or a confederacy, then ®(P',C) contains a confeder-
acy unless C is a government and there exists a subgraph G' of G such
that (G', PU P', L) is a harmonica from P to P' with government C.

Corollary 3.3.12. Let G be a plane graph, and let P and P be two paths
of length one in OG. Let L be a list assignment such that:

(a) for everyv € V(0G), |L(v)| > 3; and
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(b) otherwise, |L(v)| > 5.

If there is a confederacy C of L-colourings of P, then there exists a confed-
eracy C' of L-colourings of P’ such that every colouring in C' is extendable

to a colouring of G whose restriction to P is in C.
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Chapter 4

Inner 4-Lists

4.1 Introduction

The main results in this chapter are Theorems 4.3.1 and 4.4.2. Theorem
4.3.1 is an extension of Theorem 3.2.4 of Thomassen, and Theorem 4.4.2
is an extension of Theorem 4.4.1 of Postle and Thomas.

In Theorem 4.3.1 we prove that, if we change the statement of Theo-
rem 3.2.4 to allow one inner 4-list, then more wheel-like structures need
to be excluded than the generalized wheels so that the colouring of P
extends to G.

In Theorem 4.4.2 we prove that we can change the statement of Theo-
rem 4.4.1 to allow one inner 4-list if we add a few conditions on x. Those
conditions are concerned with the adjacencies between x and P and with
the situation when z is the centre of a wheel.

In Section 4.2 we prove the lemmas we need for the proofs of the the-
orems. We prove analogues of Lemma 3.2.10 for wheels, double-centred
wheels, and wheels of wheels with centre a 4-list vertex. We also prove
Proposition 2.1.2.

In Lemma 3.2.10, Thomassen proved that there is at most one bad
colouring for the principal path of a generalized wheel that is not a broken
wheel. Here we prove that there is at most one bad colouring of a path
of length one on the outer walk of a wheel with centre a 4-list. We also

prove that there is at most one bad colouring of a path of length two on
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the outer walk of a wheel of wheels under certain conditions.

4.2 Lemmas

In this section we prove analogues of Lemma 3.2.10. First we prove in
Lemma 4.2.1 that there is at most one bad colouring of a path of length
one on the outer walk of a wheel with centre a 4-list vertex. Second we
prove in Lemmas 4.2.4 and 4.2.5 that there is at most one bad colouring
of a path of length two on the outer walk of a wheel of wheels containing
exactly one inner 4-list under certain conditions. Fortunately, the con-
ditions are exceptions that do not occur in a minimum counterexample
of Theorem 4.3.1; there should be no separating 4-cycles with interiors
consisting of 5-list only, and no separating triangles. We also prove Propo-
sition 2.1.2.

The last lemma in this section, Lemma 4.2.6, is concerned with choos-
ing an appropriate colouring for a path P of length three on the outer
walk of a wheel with centre a 4-list. The colouring is chosen so that it
extends to the wheel and is chosen from two confederacies for the first
and last length-one subpaths of P.

We start with the Lemma about extending a colouring of a path of
length one to a wheel with centre a 4-list. The proof is almost the same

as the proof of Lemma 3.2.10 of Thomassen. See Figure 4.1.

Lemma 4.2.1. Let G be a wheel with centre x and outer cycle C, and

let P be a path of length one in C'. Let L be a list assignment such that:
(a) for allv € V(C), |L(v)| > 3; and
() |L(z)| > 4.

Then at most one colouring of P is unextendable to G.

Proof. Let C' : vivg---vpvy and P = vjvs. Suppose that v; and vy are
coloured f(vy) and f(vy) respectively, and that this colouring is unex-
tendable to G. We will show that f(v;) and f(vy) are uniquely defined

in terms of the other lists.
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V2 U1

L(vn) = {1}, "
L(vy) = {2}, L(vr) = {1},
L(U3) = {27374}7 L(UQ = {2}7
L(vy) = {3,4,5}, L(v3) = {1,2,4},
L(vs) = {3,4,5}, L(vg) ={1,3,4},
L(vg) = {1,3,4} and L(vs) = {3} and
L(z) ={1,2,3,4}. L(z) ={1,2,3,4}.

Figure 4.1: Wheels with centre a 4-list. The colouring of the thick path
is bad.

First, there are at most two colours in L(vs) \ {f(v2)}. Suppose there
are more, and let L’ be the list assignment of G — v; — vy obtained by

deleting from L(v), for every v € G, the colours of its neighbours in P.

Then |L'(x)| > 2,|L' (vg)| > 2 (we may assume that k > 3), |L'(v3)| >
3 (by assumption) and L(v) > 3 otherwise. This is colourable by Thomassen
(the two 2-lists are adjacent and we can colour them first to have a pre-

coloured edge). Similarly, L(vg) \ {f(v1)} consists of exactly two colours.
Let L(vs) \ {f(v2)} = {e, 8}, and L(vi) \ {f(v1)} = {~,}.

Now we show that L(z)\{f(v1), f(ve)} = {a, B} = {7,0}. Suppose
for contradiction that L(z) \ {f(v1), f(v2)} has a colour € distinct from «
and . We can then colour x by €, give v the list {«a, 3, €} and extend the
colouring to G — vy — v9 by Thomassen, a contradiction. That {v,d} =
L(z) \ {f(v1), f(v2)} too follows by symmetry.

Thus L(vs) and L(vy) have precisely two colours in common and f(v;)

is the unique colour in L(vg)\L(v3) and f(vs) is the unique colour in

L(vs) \ L(vy). O
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It is now convenient to restate and prove Proposition 2.1.2 since we
use Lemma 4.2.1 in the proof. We use Theorem 4.3.1 in the proof as well.
Theorem 4.3.1 is stated and proved in Section 4.3 which is dedicated for
it. Proposition 2.1.2 is not used in the proof of Theorem 4.3.1, and so

there is no vicious circle.

Proposition 2.1.2. Let G be a plane graph and let x and y be two inner
vertices of G that are the centres of wheels Wy and Wy, respectively, in G.
Suppose that, fori € {1,2}, V(OW;) C V(0G). Let L be a list assignment
such that:

(a) for everyv € 0G, |L(v)| > 3;
(b) [L(x)] = [L(y)| = 4; and
(c) otherwise, |L(v)| > 5.

Then G is L-colourable.

Proof.

Claim 4.2.2. (G is 2-connected.

Proof. Suppose for a contradiction that G has a cut vertex. If one of
the blocks contain both x and y, we colour this block by induction then
colour the rest of the graph by Theorem 3.2.6. If z and y are contained in
different blocks, we colour the block containing x first by Theorem 4.3.1
(the theorem has no conditions in case the precoloured path is empty),
then colour the rest of the graph also by Theorem 4.3.1 (the theorem has

no conditions in case the precoloured path consists of one vertex). ]

Hence C is a cycle and we may suppose that C' = vy - - - v,0;.

Claim 4.2.3. There are chords vjv,, and v,v,, | < r < s < m such that
the subgraph H bounded by v;---vvs - vy has all its inner vertices
having lists of size at least five, and such that vjv,, is an edge in the outer
cycle of the wheel W1 with centre x and v,vs is an edge in the outer cycle
of the wheel Wy with centre y.
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Proof. Follows from planarity and symmetry of x and y. ]

Now by Lemma 4.2.1 there is at most one colouring of v,vs unextend-
able to Ws. Let a be a colour in L(vs) different from the colour involved
in the unique colouring of v,vs unextendable to W5, and let b and ¢ be
two different colours in L(v,) \ {a}. Let C := {®1, p2} where ¢; and ¢
are two colourings of v,v, defined by ¢1(vs) = p2(vs) = a, ¢1(v,.) = b and
@2(v,) = ¢. Then C is a dictatorship, that is it contains a government,
and so by Corollary 3.3.8, ®g(v;v,,,C) contains a government.

Again by Lemma 4.2.1, there is at most one colouring of v;v,, unex-
tendable to ;. Colour v;v,, by a colouring from ® g (v;v,,,C) (recall that
a government contains at least two different colourings) different from the
unique colouring unextendable to W;. Then extend that colouring to H
such that the colouring of v,v, is in C (we can do this by the definition of
O (vjvm, C)). Now colour Wy and W then colour each of the remaining

uncoloured parts of G by Theorem 3.2.6. ]

Now we prove the lemmas concerning double-centred wheels and wheels

of wheels.

Lemma 4.2.4. Let W be a double-centred wheel with centres x and y and
outer cycle C' := vivy - - - vpv1, and let L be a list assignment of W such
that:

(a) for everyv € V(C), |L(v)| > 3;
(b) |L(z)| = 4; and
(c) otherwise, |L(v)| > 5.
Suppose also that:
(i) x is not the centre of a wheel whose outer cycle is a triangle; and

(ii) y is not the centre of a wheel whose outer cycle is a triangle or a

4-cycle.

Then there is at most one bad colouring of P := vavqvy.
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Proof. We consider three cases, depending on which vertices of P are ad-

jacent to x and y. See Figures 4.2 and 4.3 for examples of the three cases.
Case 1. x is adjacent to all vertices of P.

In this case, there are indices r and s such that 2 < r < s < k; for
ie{l,---,r}U{s, -+, k}, v; is adjacent to x ; and for i € {r,--- s}, v;
is adjacent to y.

Note that v, and v, are not adjacent since y is not the centre of a wheel
whose outer cycle is a triangle. Let ¢ be a bad colouring of P. By Lemma
3.2.10, there is at most one colouring of v,xv, that is unextendable to the
wheel with centre y and outer cycle v,v,41 - - - vsxV,.

Therefore, there is exactly one colour in L(z) \ {¢(vs), p(v1), p(vk)},

let a denote this colour. Then the lists of the vertices v3 to v, are

{QO(UQ), a, a3}7 {CL, as, (1,4}, Ty {CL, Ar_1, ar}

and the lists of v,_; to vs are

{@(Uk)7 a, akfl}v {a7 Ak—1, aku}v R} {CL, As41, as}~

Any colouring that gives P a set of colours different from {¢(vs), p(v1),
¢(vg)} allows z to be coloured by a colour different from its colour in the
unique bad colouring of v,zv,, and so we consider only colourings of P
that permute the colours of ¢.

Let ¢’ be a colouring of P different from ¢ such that ¢(V(P)) =
¢'(V(P)). Then either ¢'(ve) # p(v2) or ¢'(vk) # p(vx). Suppose with-
out loss of generality that ¢'(vy) # ¢(v2). In case P is coloured by ¢,
is still forced to be coloured by a but the vertices from v3 to v, can now
be coloured ¢(vq), as, - -+ ,a,_1 instead of as, ay - - - , a, (they are forced to
be coloured so when P is coloured by ¢). Now the bad colouring of v,zv

is avoided (since v, is coloured differently).

Case 2. Neither x nory is adjacent to all vertices of P.
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In this case, there is an index s, 2 < s < k, such that: for i € {1,--- s},
v; is adjacent to x; and for i € {1} U {s,--- ,k}, v; is adjacent to y.

We have two broken wheels W; and W, with principal paths P, :=
voxvs and Py := vpyvs respectively (W) is bounded by the cycle vyuvs - - -
vsxVsvy and Wy is bounded by the cycle vgvg_q -+ - vsyvi). Let ¢ be a bad
colouring of P.

When P is coloured by ¢, the vertex vy in P; is coloured ¢(vs). Then
according to the five possibilities of Lemma 3.2.11, the bad colourings of

xv, for Wi are a subset of a set of two colourings that:

(a) either alternate the colours of x and wv;, for example {ab,ba} (call
this the first type); or

(b) both give v, the same colour but change the colour of z, for example
{ac, be} (call this the second type).

Similarly for yvs and Wj.

Subcase 2.1. Both xvs and yvs have their bad colourings of the sec-
ond type, or s = 3 (so that vy and v, are adjacent) and yvs has its bad

colourings of the second type.

In this case, it is two colours of v, that we want to avoid in order to
avoid the bad colourings of xv, and yv,. Since v, has a list of size at
least three, we can avoid those two colours, colour x, then colour y, and
then extend the colouring to Wy and W5. This means that ¢ is not a bad
colouring, a contradiction.

Note that we do not have to consider the case when s = k — 1 as we

considered s = 3 since y is adjacent to at least four vertices on C.

Subcase 2.2. At least one of xvs and yvs has its bad colourings of the

first type.
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U1
Ve

o L(v) = {1}, L(vs) = {2},
L(v) ={2}, L(v) = {3},  L(vs) ={2,3,4}, L(va) = {2,3,4},
L{vs) = {2,3,4}, L{v)) = {2,3,5}, L(vs) = {2.3,4}, L{ve) = {2,3.4},
Livs) = {1,3,5}, L(vs) = {1}, Llvr) = {2,3.4}, L{vs) = {3,4,5},
L(z) = {1,2,3,4} and L(vg) = {5}, L(x) = {1,2,3,4} and
L(y) = {1,2,3,4,5}. L(y) = {1,2,3,4,5}.

Figure 4.2: Double-Centred Wheels.

It is easy to see that L(v,) cannot contain a colour not involved in a
bad colouring of yvs or zvs (not equal to ¢(ve) in case s = 3). In case
s # 3, we may assume without loss of generality that each of zv, and
yvs has two bad colourings (not only one) since otherwise the problem is

easier.

Since there are at most two colours of vy involved in bad colourings of
yvs, there is a colour in L(v,) that is not involved in a bad colouring of
yvs. This colour either equals ¢(v2) in case s = 3 or is involved in a bad
colouring of xv, otherwise). Similarly, there is a colour in L(vg) that is
not involved in a bad colouring of zv, (or is different from ¢(vq)) but is

involved in a bad colouring of yuv;,.

Note that in case s = 3, any colour of x when vy is coloured ¢(vs)
can be counted as involved in a bad colouring. Then whether the bad
colourings of xv, are of the first or the second type or whether s = 3,
there are at least two colours of x involved in bad colourings. Denote

those two colours by a and b.
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L(Ul) = {2}a L(UQ) = {1}a L(US) = {17475}7 L<U4) = {174a5}7
L<U5) = {1747 5}7 L(UG) = {27475}7 L<U7) = {2747 5}7 L(’Ug) = {37475}7
L(vg) = {3}, L(x) = {1,2,4,5} and L(y) = {1,2,3,4,5}.

Figure 4.3: Double-Centred Wheels.

We have the following four cases.

(i) s = 3 and the bad colourings of yvs are of the first type.

In this case, L(vs) = {¢(v2), ¢, d} where the bad colourings of yv, are
{cd,dc}. If L(x) contains ¢ we colour z with ¢, colour vz with d, then
colour y with a colour different from ¢ and d. Then the colouring of viyv,
is extendable to W5. Thus we may assume that L(z) does not contain ¢
and similarly does not contain d, i.e., each of a and b is different from c
and d.

(ii) Both zvs and yvs have their bad colourings of the first type.

Suppose that the bad colourings of yv, are {cd, dc}. Since we assumed
that a and b are two colours of x involved in bad colourings of xv, and
the bad colourings of xv, are of the first type, those bad colourings are
ab and ba.

Recall that L(vs) contains a colour that is not involved in a bad colour-

ing of yv, but is involved in a bad colouring of zv,. If L(x) contains a
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colour different from a and b we can colour x with this colour, colour
vs by a or b depending on which of them is in L(v,) and is different
from ¢ and d. Colour y, then extend the colouring to W; and W,. Thus
L(x) \ {(v2), p(v1)} = {a, b}.

Consider the two cases when s = 3 or xwv, has its bad colourings of
the first type, while yv, has its bad colourings of the first type. In case
s = 3 colour vg by a colour different from ¢(vg). In the second case,
colour = by a or by b, and then colour vs by a colour different from b or
respectively a. Then yvy is forced to be coloured cd or de. This means
that {a,b} N {p(v1), ¢(vk),c,d} = 0 and L(y) contains ¢(v1), ¢(vk), a, b,
c and d, a contradiction. To see this recall that ¢ and d are different from
¢(v1) and (vg) by definition, that is since ¢d and de are bad colourings
of yvs when P is coloured by .

Thus for at least one of a and b, yvs can be coloured by a good colour-
ing for Wy (such that the colour given to vy together with the colour
given to x make a good colouring of zv,). This means that ¢ is not a bad

colouring, a contradiction.

(iii) The bad colourings of xvs are of the second type and of yvs are of the
first type.

Then there is a colour ¢ such that the bad colourings of xv, are {ca, cb}
and there are colours e and f such that the bad colourings of yv, are
{ef, fe}.

Since L(vs) does not contain a colour that avoids the bad colourings
of both zvs and yvs, ¢ ¢ {e, f} and L(vs) = {c,e, f}. As |L(y)| > 5,
there is a colour d € L(y) \ {¢(v1), ¢(vk), e, f} (note also that {e, f} N
{p(v1), p(vg)} = 0 by the definition of e and f). If d # a, we can colour
y by d, colour x by a then colour vs by either e or f depending on which
of them is different from a. This colouring is extendable to W; and Wj,
a contradiction. Thus d = a and also by symmetry d = b. Thus a = b, a

contradiction.
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(iv) The bad colourings of xvs are of the first type and of yvs are of
the second type.

The bad colourings of xv, are {ab,ba} and there are colours ¢, e and
d such that the bad colourings of yv, are {cd, ce}.

It is not hard to see that the assumption that ¢ is a bad colour-
ing for P implies that L(vs) = {a,b,c}, L(z) = {¢(v1), ¢(vs2),a,b} and
{e(v1),o(vg),c,d,e} C L(y). If ¢ is not in L(y) then by colouring v with
¢ we avoid the bad colourings of zvs and still have three colours in L(y)
enough to avoid d and e. Now we consider any colouring ¢’ of P different
from ¢ and show it is a good colouring.

Suppose for a contradiction that ¢’ is a bad colouring for P, and let P
be coloured by ¢'. If p(vy) # ¢ (vs), then the set of bad colourings of zvj
is different from what it was in the case when P is coloured (. Similarly,
if p(v) # ¢'(vk), then the set of bad colourings of yv, is different from
what it was in the case when P is coloured . Since L(vs) = {a,b,c}, in
case P is coloured ¢, the set of bad colourings of zvy is either {bc, cb} or
{ca, ac}.

We may assume without loss of generality it is {ca, ac}. Thus a and
¢ are colours of x involved in bad colourings of vezvs when P is coloured
¢'. Since a and b are colours of z involved in a bad colouring of vozv;
when P is coloured ¢, all the lists of the vertices v; with 3 < ¢ < s are
equal to {a,b, c}. In particular, since L(vs) = {a,b, p(v2)}, p(v2) = c.

Since we assumed that the bad colourings of zv, are {ac, ca} in case
P is coloured ', the colour of vy involved in the bad colourings of yv,
is b. Since L(vsy1) = {c,d, e}, b € {d,e}. We may assume without loss
of generality that b = d, and so the bad colourings of yvs in case P is
coloured ¢’, are bc and be.

Thus e and ¢ are colours of y involved in bad colourings of wv,yv,
when P is coloured ¢’, and, d(= b) and e are colours of y involved in
bad colourings of vpyvs when P is coloured . Thus all the lists of the
vertices v; with s < i < k — 1 are equal to {b,¢,e}. In particular, since

L(vk_1) = {¢(vg),d, e} (and d =b), p(vg) = c.

45



Now that we know that p(ve) = p(vx) = ¢, we see that in the case
when P was coloured ¢, we could have coloured vy with ¢,  with b, and
y by a colour different from ¢(v1), ¢ = ¢(vg) (the colours of vs and vy)
and b(= d) (the colour of x). This gives voxvs and vxyvs colourings ex-
tendable to W; and W5, a contradiction to the assumption that ¢ is a

bad colouring of P.

Case 3. y is adjacent to all vertices of P.

In this case, there are indices r and s, 2 < r < s < k, such that: for
i€ {r,---,s}, v; is adjacent to x; and for ¢ € {1,--- ;r}U{s, - -, k}, v;
is adjacent to y.

Note that v, and v, are not consecutive on C' since x is not the cen-
tre of a triangle, and either r # 2 or s # k since y is not the cen-
tre of a 4-cycle. We have a broken wheel W; with major vertex x and
outer cycle xv,v,41 -+ - vsx and a wheel W5 with centre y and outer cycle
Uy * ot UpTUgUg 1 * * * URUY.

Let ¢ be a bad colouring of P. In every case in Lemma 3.2.11, there
are at most four colours that appear in bad colourings of v,.xv, for Wj.
Suppose that the number is at most three, that is there is a set S of size
three such that for every bad colouring i of v,zvs, {1 (v,), ¥ (z), ¥ (vs)} C
S. Since |L(z)| = 4, there is a colour # in L(x)\ S. Since |L(y)| > 5,
there is a colour X in L(y) different from 6, p(vs), ¢(v1) and o(vy).

When P is coloured with ¢, we can colour y with A, colour the vertices
from v3 to v, in ascending order of indices, then colour the vertices from
Ug_1 to vg in descending order of indices. If v, or v, receives a colour not
in S, we are done. If both v, and v, receive colours in S then we can
colour z with 6. This colouring is extendable to W, a contradiction.

Therefore there are four distinct colours a, b, ¢ and d such that the
bad colourings of v,zv, are acb and adb. Recall that either r # 2 or s # k.
We may assume without loss of generality that r £ 2. Let e and f be two
colours in L(y) \ {(va), (vr), o(0e)}.

If when P is coloured ¢, v, is forced to be coloured a whether we
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colour y with e or with f, then e and f are in the lists of all the vertices
v; with 3 <4 <r. In particular L(vs) = {¢(ve), €, f}.

Thus in this case, there is no third colour in L(y)\{y(va), ¢(v1), o(vk) }
that forces v, to be coloured a. If there is such a colour, then L(v3)
contains that colour besides ¢(v3), e and f, i.e. it has size four, but v
has degree three and so we could have coloured v, differently from a then
colour v3 at the end.

Now we may assume without loss of generality that L(y)\{v(v2), p(v1),
o(vg)} = {e, f} and that both colours force v, to be coloured a. Now con-
sider any colouring ¢’ different from ¢.

If the set L(y) \ {¢'(v2), ¢’ (v1), ¢ (vg)} contains a colour g different
from e and f that forces v, to be coloured a then the lists of all the
vertices v; with 3 < ¢ < r are equal to {e, f, g}, a contradiction. Note that
a ¢ {e, f, g} since v, receives the colour a when its neighbour y is coloured
e, fand g. Therefore we may assume that L(y)\{¢'(v2), ¢'(v1), ¢’ (vx)} =
L(y) \ {(v2), p(v1), p(vr)} = {e, [}

Thus ¢ and ¢’ are just different permutations of the same three colours
among the vertices of P. Then either ¢(vy) # ¢'(ve) or w(vk) # @' (vg).
If s =k and ¢(vg) # ¢'(vx) then the bad colouring of v,zv, is avoided.
If s # k then the argument above with v, could by symmetry have been
done with vs. Therefore we may assume without loss of generality that
p(v2) # ¢ (v2).

Thus at least one of e and f does not force v, to be coloured a when P
is coloured ¢’ since otherwise L(vs) contains ¢'(ve) besides ¢(vq), e and
f, i.e. has size four, a contradiction. Hence ¢’ is a good colouring and ¢

is the only bad colouring for P. O]

Note that if a wheel of wheels is not a double-centred wheel then it

has a well-defined centre.

Lemma 4.2.5. Let W be a wheel of wheels that is neither a wheel nor a
double-centred wheel. Suppose that W has outer cycle C' := vivy - - - 01

and an inner vertex x. Let L be a list assignment of W such that:
(a) for everyv € V(C), |L(v)| > 3;
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(b) |L(z)| = 4; and
(c) otherwise, |L(v)| > 5.
Suppose also that:

(i) there are no separating triangles; and

(ii) there are no separating 4-cycles with interior consisting of 5-lists

only.
Then there is at most one bad colouring of P := vavvy.

Proof. Let ¢ be a bad colouring of P.
Case 1. The centre of W s x.

Let r and s be the smallest and largest indices respectively such that
r,s > 2 and zx is adjacent to v, and v, (as 5 and 9 in Figure 4.4). If
the subgraph G; bounded by xv,v,;1 ---vsx is not a broken wheel with
principal path v,zv,, then by Lemma 3.2.10 there is at most one colouring
of v,xv, that is unextendable to G;.

In that case delete from L(x) the colour of = in that colouring. Again
by Lemma 3.2.10 the subgraph G5 bounded by vyvs - - - v, 20, - - - vV 1S
colourable, with this new list of L(z), when P is coloured by any colouring
different from ¢.

If GGy is a broken wheel with principal path v,.xv,, then W consists
of three sections, since W is neither a wheel nor a double centred wheel.
Two of those sections are wheels and together they form G, the third
section is the broken wheel GG, and x is adjacent to vy, v, and w;.

Let z; be the centre of the wheel bounded by vivy - - - v,.zvy, and 2z,
be the centre of the wheel bounded by vyzvs - - vxvy (as in Figure 4.4).
Let W; be the broken wheel bounded by v,.z1v5 - - - v, and W5 the broken
wheel bounded by vg2z9v, - - - v,. Note that vezyv, is the principal path of
W7 and v 20, is the principal path of Ws.

Now when P is coloured with ¢, there are at most two colourings of

z1v, that are bad for W and at most two colourings of zyv, that are bad
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Figure 4.4: A wheel of wheels with centre x and three sections, a broken
wheel and two wheels with centres z; and z,.

for W5. Therefore, there are at least four colourings of z;v, that are good
for Wy and at least four colourings of zyv, that are good for Wy (this is
true whether v, is adjacent to v, or not and whether v, is adjacent to vy
or not).

Note that, two colourings of zyv, that give vy different colours have
extensions to x such that the resulting colourings of xv, are still different
at vs. Similarly, two colourings of z9v, that give v, the same colour but
give zy different colours can be extended by giving different colours to x
so that the resulting colourings of xv, are different.

Note also that, by Lemma 3.2.11, we have two cases for the colours
of v, involved in good colourings of zov,. One case is, there are at least
three colours of v, involved in good colourings of zev, and at least one of
those colours is involved in two good colourings of zov,. The other case
is, there are only two colours of v, involved in good colourings of zov, and
each of them is involved in at least two good colourings of zyv;.

Thus, there is a set of four pairwise distinct colourings of zvy such
that each of those colourings is compatible with at least one of the good
colourings of zyv;.

There is also a set of four pairwise distinct colourings of GG; such that
each of them is compatible with at least one of the good colourings of

xvs and such that their restrictions to zwv, are pairwise distinct. That the
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Figure 4.5: L(vy) = {4}, L(v2) = {1}, L(vs) = {1,4,5}, L(v4) = {3,4, 5},
L(US) - {273’5}’ L(U6> - {1’475}7 L(”?) = {17374}7 L(U8) - {3}7 L(ZL‘) -
{1,2,3,4} and L(y) = L(z) = {1,2,3,4,5}.

restrictions to zv, are pairwise distinct can be seen by extending each
colouring of xwv, by colouring from v, to v, in descending order of indices
as long as we are forced (that is have only one colour choice).

If the two colourings of xwv, have different colours of x, then this is
still the case in the resulting two colourings of zv,. On the other hand,
if they give x the same colour but give v, different colours, then, as long
as we are forced, we have different colours with both colourings of zv, at
every step along the descending indices. If we have choice at some index,
then we can jump to v, and give it different colours with each colouring
of xv, then go in ascending order of indices until we come back to the
vertex were we have choice.

Now from the set of four pairwise distinct colourings of xv, we have
a set of four pairwise distinct colourings of zjv, such that each of them
is compatible with ¢ and with at least one of the four colourings of zv;.
Since there are at most two bad colourings of zjv, for W7, at least two of
the four colourings we obtained for zjv, are good for W;. Thus we have

a colouring of the whole graph.

Case 2. The centre of W is not x.

Let y be the centre of W.
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L(Ul) = {2}’ L(U2) = {1}’ L(US) = {17275}7 L<U4) = {273’5}7
L(vs) = {3}, L(z) ={1,2,3,4} and L(y) = {1,2,3,4,5}.

Figure 4.6: Wheels of Wheels

Subcase 2.1. x is adjacent to all the vertices of P.

The subgraph G — vy is not a broken wheel with principal path vezvy
since W is not a wheel. Therefore by Lemma 3.2.10 there is at most one
colouring of vexv, unextendable to G — v;. Since ¢ is a bad colouring,
there is only one colour ¢ in L(z) \ {¢(v2), p(v1), p(vx)} and @(vg)ecp(vg)
is the unique colouring of vozvy unextendable to G — v;.

Any colouring of P that is different from ¢ at vy or at v, gives voxvy a
colouring different from its unique bad colouring. So consider a colouring
¥ of P such that ¥(vy) = @(v2), ¥(vr) = p(vg) but ¥(v1) # @(v1). Then
o(v1) € L(z) \ {¢(v2),%(v1),¥(v)}, and so we can colour = with ¢(vy),
which is a colour different from ¢, and avoid the unique bad colouring of

V2 X V.
Subcase 2.2. x is not adjacent to v;.

See Figures 4.7 and 4.8 for examples. Note that z is the centre of
a wheel section of W. Then there are indices [ and m, [,m > 2 such

that the vertices of C' in the wheel section centred at z are v; such that
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Figure 4.7: The case when x is not adjacent to v;.

U1 (%1
V2 V12 (%
U3 U3
V11
Uy V1o V4
Vs Vg Us
Ve Vg Vg
U7 U7

Figure 4.8: The case when z is not adjacent to v;.

[ <i<m. Thus y is adjacent to v; and v,,.
By Lemma 3.2.11, the colourings of v;xv,, unextendable to the broken

wheel bounded by xv; - - - v, x:
(1) either have values in a fixed 3-set; or

(2) are two colourings that give v; the same colour and give v,,, the same

colour but give x two different colours.

In case (1), since |L(x)| = 4, L(x) contains a colour ¢ that does not
appear in any of the bad colourings of v;zv,, (not as a colour of = nor
v; nor vy,). Now consider the 2-chord v;yv,,, it has P on one side and
x on the other side. The side of vyv,, containing P is colourable by
Theorem 3.2.4 if y is given the list L(y) \ {c} and P is coloured ¢ since
L)\ {c}] = 4.

Then, if this colouring gives v; or v,, the colour ¢, the bad colourings of

VTV, are avoided, and if it does not, then we still can colour x the colour
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¢ since neither y nor v; nor v, is coloured ¢. Thus the bad colourings of
virv, are avoided and the graph is colourable.

In case (2), suppose that the two bad colourings of v,zv,, are acb and
adb. We need to show that when P is coloured by any colouring different
from ¢, we can colour the side of v;yv,, containing P such that either v,
is not coloured a or v,, is not coloured b.

Let r and s be the smallest and largest indices respectively such that
r,s > 2 and y is adjacent to v, and v,, and let G’ be the subgraph bounded
by v1 - - v, yvs - - - vpv1. The subgraph G’ can be:

e a union of two wheels that intersect only in yuvy;

e the union of two triangles that intersect only in yv; (as in the left-

most drawing of Figure 4.8);

e the union of a wheel and a triangle that intersect only in yv; (as in

the leftmost drawing in Figure 4.7); or
e a wheel.

Note that z is not adjacent to vy and v together since then we will
have a separating 4-cycle with interior consisting of 5-lists only.

e Suppose G’ is the union of two wheels.

Let w be the centre of the wheel with principal path vyv1y (as in
the rightmost drawing of Figure 4.8). Let f be the colour of y in the
unique colouring of yvvs unextendable to the subgraph H; bounded by
V1Vg - - VYU

Consider the subgraph H,; bounded by wv,_jwyuv,, - - vp_1 with the
list assignment L’ defined as, L'(vg_1) = L(vg_1) \ {o(vx)}, L'(w) =
L)\ {p(o), 9(00)}, L) = L)\ Lo, £}, Lom) = Livw) \ {b).
Note that m # k — 1 since there are no separating 4-cycles whose interior
consists of 5-lists only, and L'(v) = L(v) otherwise.

This subgraph, H,, is L’-colourable by Theorem 3.2.8. Fix an L’
colouring of Hs and note that now the bad colourings of v;zv,, are avoided

since vy, is coloured by a colour different from b. Now colour H; (note
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that v; and v,, are not adjacent since there are no separating triangles,
and so the colourings of H; and H, are compatible), colour x, then colour

the broken wheel bounded by zv; - - - v, .

e Suppose G’ is the union of two triangles.

Then since W is not a double centred wheel, at least one of the two
subgraphs bounded by yvs - - - v,y and yv,, - - - vLVRY is not a broken wheel.
Suppose without loss of generality that the subgraph H bounded by
yvg -+ -y is not a broken wheel (then in particular it is not a trian-
gle). Then by Lemma 3.2.10 there is at most one colouring of vyyv; that
is unextendable to H.

Therefore there is at least one colour in L(v;) that is different from a
and from the colour of v; in that unique bad colouring of v;yvs. Colour vy
with that colour (this is safe since v; and vy are not adjacent since H is
not a triangle and since there are no separating triangles), colour y, then

colour H.

Now colour the subgraph bounded by yv,, - - - vyvry by Theorem 3.2.6
(this colouring is compatible with the colouring of H since v, and v; are
not adjacent). Finally colour z then colour the broken wheel bounded by

TV Uy X
e Suppose G’ is the union of a wheel and a triangle.

Suppose without loss of generality that the triangle is vyvy and the
wheel is the subgraph bounded by vyvs - - - v,yv; and that it has centre z
(as in the middle drawing of Figure 4.8). Suppose first that [ # r and
m # s and that the subgraph H bounded by vgyv,, - - - vx is not a broken
wheel.

Colour v,, by a colour different from b and from the colour of v,, in
the unique colouring of viyv,, unextendable to H. Delete that colour
from the lists of y and x, then the subgraph bounded by yzvs--- vy is
colourable by Theorem 3.2.8 (the 2-lists are at y and vs, after deleting
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from their lists the colours of their neighbours in P). Now colour H then
colour the broken wheel bounded by zv; - - - v, .

Consider now the case when H is a broken wheel. The list L(y) \
{@(v1), p(vg)} contains two colours different from the colour of y in the
unique colouring of yv;v, unextendable to the subgraph bounded by
yuvg - - - vy.  Colour y with one of those two colours then colour the
vertices from v,_; to v, in descending order of indices.

If the colour v,, receives is b, recolour y by the other colour then
recolour the vertices from v;,_; to v,, again in descending order of indices.
Since the first colour given to y forced v,, to be coloured b, and since vy
is still coloured the same, now v,, is either forced to be coloured a colour
different from b or has the choice to be coloured a colour different from
b. Finally colour the subgraph bounded by yvivs - - - vy, then colour the
broken wheel bounded by zv; - - - v, 2.

Now suppose that m = s = k but [ # r. Suppose that the colour of vy
is b, so we have to avoid colouring v; with a. Delete a from the list of v,
colour the subgraph bounded by yzvs - - - vy by Theorem 3.2.8 (the 2-lists
are at v; and v3), then colour the broken wheel bounded by zv; - - - vx.

If m=s=kand [l =r (as in the leftmost drawing of Figure 4.7),
then colour z and v, such that the colour of v, is different from a and
the colouring of wvyzv, is extendable to the broken wheel bounded by
ZUg U2,

Such a colouring exists since with vy coloured ¢(vs), there are still
three colours in the list of z and three colours in the list of v, as v, and
vy are not adjacent, and by Lemma 3.2.11, there are at most two bad
colourings of v, z, either of the form ef and fe, or gf and ge. Now colour

y, then colour the broken wheel bounded by zv, - - - vix.

e Suppose G’ is a wheel.

Let z be the centre of G'. We may suppose that at most one of r = [
and s = m holds since otherwise we have a separating 4-cycle with interior
consisting of 5-lists only as in the rightmost drawing of Figure 4.7 (the

graph is colourable in this case though but we will not write the proof).
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By symmetry there are only two cases, [ = r and m # s, or both [ # r
and m # s. In the first case, if r # 2, colour z (which has two available
colours) a colour such that when colouring the vertices from vz to v, in
ascending order of indices, v, receives a colour different from a. Now
colour the vertice from v;_; to v4 in descending order of indices, colour ¥,
colour the graph bounded by yv,, - - - vsy by Theorem 3.2.6, then colour
the broken wheel bounded by zv, - - - v,,z.

If r = 2, colour the vertices from v;_1 to v, in descending order of
indices. Let H be the subgraph bounded by yv,, - - - vsy. In case H is not
a broken wheel, colour y (which now has two available colours) a colour
that is different from the colour of y in the unique colouring of v,,yv,
unextendable to H. In case H is a broken wheel, colour y a colour that
does not force v,, to be coloured b. Now colour H then colour the broken
wheel bounded by xvs - - - v,,x.

In the second case, I # r and m # s, we again colour the subgraph
G’ —y. Colour y a colour with a colour that is different from the colour
of y in the unique colouring of v,,yv, unextendable to H in case H is not
a broken wheel. In case H is a broken wheel, colour y a colour that does
not force v,, to be coloured b. Then we colour H, then by Theorem 3.2.6
we colour the subgraph bounded by yv, - - - vy, and finally we colour the
broken wheel bounded by zv; - - - v, x.

Now we consider the case when z is adjacent to v; and only one other
vertex of P (as in Figure 4.9). We assume without loss of generality that
that vertex is vy. Suppose first that y is adjacent to vg. Let r be the
smallest index such that » > 2 and y is adjacent to v,.

Thus W consists of three parts, a wheel with centre x and outer cy-
cle v1vg - - - v,yvy, a triangle viyvpvr, and a generalized wheel W' that is
not a broken wheel (since W is not a double-centred wheel) bounded by
yu, - - - vgy (see the leftmost drawing in Figure 4.9).

There are at least two colours in L(x) \ {¢(v1),¢(v2)}. Colour x
with one of those two colours then colour the vertices from wvs to v, in
ascending order of indices. If this colouring gives v, the colour of the

unique colouring of v,yv, unextendable to W', we recolour x with the
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Figure 4.9: The case when x is adjacent to v; and only one other vertex
of P.

other colour then again colour the vertices from wvs to v, in ascending
order of indices. Then v, receives a colour different from the one of the
previous colouring and so the bad colouring of v,yv, is avoided. Now
colour y (still has a colour in its list since only four of its neighbours are
coloured, vy, vy,  and v,) then colour W”.

Suppose now that y is not adjacent to vy and let v, and v, be as before.
Then the graph W; bounded by vyvs - - - v,.yv; is a wheel with centre x, the
graph W5 bounded by v1yvs - - - vpvy is a wheel with centre a 5-list vertex
z, and the graph W3 bounded by yuv, - - - vy is a generalized wheel (can
be a broken wheel), as in the middle and rightmost drawings in Figure
4.9.

If W3 is not a broken wheel then by Lemma 3.2.10 there is at most
one colouring of v,yv, that is bad for W3. We can choose a colour for z
such that when we colour the vertices from vs to v, in ascending order of
indices we have v, coloured by a colour different from that of the unique
bad colouring of v,yvs for W3. Then of the two colours remaining for y
(the only coloured neighbours are vy, « and v,., since vy, is not a neighbour
of y by assumption), choose the one such that the bad colouring of yv vy
for Wy is avoided. Colour Wy then colour Wi.

Now suppose that Wj is a broken wheel. Let W] be the broken wheel

bounded by zvs - - - v,.x.

e If the bad colourings of v,yv, for W3 have their values in some fixed

3-set we say that they are of type 1; and
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e If they are two colourings that give v, the same colour and give v, the
same colour but give y different colours, we say that they are of type 2.

We have the following cases.

(1) (i) » =3 and Wj is a triangle, or

(ii) W3 is not a triangle and the bad colourings of vsyvs for W3 are
of type 1.
Consider first a colouring i) of P whose restriction to vjv is not a

part of a bad colouring of yv v, for Ws. Let a and b be the two
colours in L(x) not in {¥(vg),v(v1)} and {c,d} the two colours in

L(y) \ {a, b, ¥ (v1)}.

In case (i), if when colouring y with one of ¢ or d then colouring
W3, the colour vy receives allows vs to be coloured, we are done. In
case (ii), if [L(vs) \ {tb(v2), c}| = 2 or [L(vs) \ {)(v2), d}| > 2, we

are done.

Therefore we may assume that L(vs) = {1(v2), ¢, d}. Now colour y
with one of @ and b (note that none of them is in L(v3)), colour Ws.

Then at most two of the coloured neighbours of v3 have colours in
L('Ug).

At least one of ¢ and d is not used in colouring v4 in case (i), or
at least one of them makes the colouring of vzyv,s good for W3 with
the given colours for y and v, in case (ii). Colour vz with the
appropriate one of ¢ or d. Finally colour z (it is colourable since v
has a colour not in L(x) \ {t(v2), ¥ (v1)}).

Now we consider colourings of P whose restriction to vyvy is a part
of a bad colouring of yv v, for Ws. Since there is only one colouring
of yvivi, bad for Wy, any two such colourings of P differ only at vs.
By what we have just proved, and since ¢ is a bad colouring of P by
assumption, the restriction of ¢ to vyvy is a part of a bad colouring

of yvivy, for Wh.

Let ¥ be a colouring such that ¢(vy) = ¥(vy) and p(vg) = ¥ (vk)
but ¢(vy) # ¥(ve). We show that ¢ is a good colouring. Again let
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L(x) \ {¢(v2),(v1)} = {a, b} and L(y) \ {a,b,¢(v1)} = {c, d}, and
let L(x) \ {p(v2), (1)} = {e, [} and L(y) \ {e, f, p(v1)} = {g, h}.

If both ew)(vy)(vy) and dip(vy)(vg) are good colourings of yvyvg
for W, then v is a good colouring of P (and similarly for ¢, g and
h). From this and the uniqueness of the bad colouring of yvivy
for Wy, we may assume without loss of generality that ¢ = ¢g and
c(v1)(vg) (which is the same as cp(vy)p(vg)) is the unique bad

colouring of yviv, for Wh.

Then di(v1)Y(vg) and he(vr)p(vg) are good colourings of yvyvy, for
Ws. When P is coloured ¢ (1), colour y with h (d) then colour Ws.
If in case (i) the colour vy receives does not allow vs to be coloured,
or if in case (ii), |L(vs) \ {¥(v2),c}| = 1 or |L(v3) \ {¢(v2),d}| =1,
then {h, p(va)} € L(vs) ({d,¢(v2)} € L(vs)).

Since ¥ (vy) # @(vg) and |L(vs)| = 3, h = d or h = 1(vy) or
d = p(vy). Suppose first that h = d. Since ¢ = g, {¢,d} = {g, h},
ie, L(y) \ {a,b,¢(v1)} = L(y) \ {e, f,p(v1)}. Since ¢(v1) = (1),
{a,b} = {e, [}, e, L(x) \ {¢(v2), ¥ (v1)} = L(2) \ {p(v2), p(v1)}.
This gives a contradiction since ¥ (vs), ¥(v1), ¢(ve) and p(v,) are
all in L(z) and ¥(v1) = ¢(v1) but (vy) # @(ve). If any of ¢(vy) or
¥ (vq) is not in L(x), then with P coloured ¢ we can colour y by a
or b, colour Wy, colour Ws then colour z. Similarly for ¢(vy) and

¢(vy) with P coloured ¢.

If h = 9(vy) (orif d = p(v9)), then with P coloured 1 (or ¢), colour
y by h (d) so that two of the neighbours of v3 and x are coloured

the same.

r =3 and W3 is not a triangle and the bad colourings of vsyvs for
W3 are of type 2.

In this case, colour vs by a colour different from its unique colour
involved in the two bad colourings of vsyv, for W3, colour z, then

of the remaining two colours for y choose one that avoids the bad
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colouring of yvyv, for Wy, colour Wy and finally colour Wi.

(3) r#3.
Let a and b be the two colours in L(x) \ {¢(vs2),p(v1)}. Let P be
coloured with . We show first that the set of good colourings of v,z
for W1 (the broken wheel bounded by zvs - - - v,2) either contains ab
and ba, or there is ¢ € L(v,) such that the set of good colourings
contains ca and cb. Note that we know from Lemma 3.2.11 that
with vy coloured (vy), the bad colourings of v,z for W] have one

of those two sets of forms.

If the bad colourings of v,z for W] are ab and ba (or they are two
colourings of this form with two other colours), let ¢ be any colour
in L(v,) \ {a,b} (or in L(v,) delete the two colours). Then ca and
cb are good colourings of v,.x for W{. If the bad colourings of v,z
for W7 are da and db then either L(v,) \ {d} = {a,b} or there is
a colour ¢ in L(v,) \ {d,a,b}. In the first case ab and ba are good

colourings, and in the second case ca and cb are good colourings.

Now we consider each of those two cases of the good colourings of
v.x for Wi, If ab and ba are good colourings, let e and f be the
two colours in L(y) \ {a,b, p(v1)}. Colour y by the colour of e and
f that avoids the bad colourings of yv vy for Wy then colour Ws.

Depending on the colour v, (v,41 in case Wj is a triangle) receives,
colour v,x either ab or ba. By Lemma 3.2.11, with fixed colours of
y and vy it is at most one colour of v, that makes the colouring of
vyvs bad for W3, If W3 is a triangle, one of a or b will be different
from the colour of v, - the colour of y, which is either e or f is

already different from both a and b. Now colour Wj.

Suppose now that ca and ¢b are good colourings of v,z for WJ. Then

(L(y) \ {c,a,p(v1)}) U (L(y) \ {c,b, p(v1)}) contains at least three
colours (since each set in the union contains at least two elements

and the two sets are different).

If v, is coloured ¢, colouring y with each of those three colours then
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colouring the vertices from v,,1 to v, in ascending order of indices
gives three different colours at v, (corresponding to the three colours
at ). One of the three colours v, can receive from this procedure
avoids all the bad colourings of vsz (the colourings that with vy
coloured ¢(vg) make the colouring of vszv, unextendable to the

broken wheel W3 bounded by zvg -« - vg2).

Now colour v, with ¢ then y with the colour that makes v, receive
the right colour to colour W3 after colouring the broken wheel W3
in ascending order of indices. Also colour W3 using this procedure,
colour W, colour x with a or b (whichever of them is available, since

the colour y is coloured with may be a or b), and finally colour W7.
O

We also have the following lemma about choosing an appropriate
colouring from two confederacies for two paths of length one, at distance
one, in the outer walk of a wheel with centre a 4-list vertex. We want the
colouring of the two paths (which is a colouring of a path of length three)
to be extendable to the wheel.

Lemma 4.2.6. Let G be a wheel with centre x, and let uwu'v'v be a path
of length three in OG. Let L be a list assignment of G such that:

o forve V(0G), |L(v)| > 3; and
o [L(x)| > 4.

Let C, and C, be confederacies for uu' and vv' respectively. Then, there

are colourings @, € C, and p, € C, such that:

e v, U, is a proper colouring of the subgraph induced by {u,u’,v',v};

and
o p, Uy, is extendable to G.

Proof. For a proper colouring ¢, Uy, of the subgraph induced by {u, ', v", v}
to be extendable to GG, the following two conditions should be satisfied:
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e [(z) contains at least one colour not in {¢,(v), @, (v), pu(u), . (u')};

and

e there is at least one such colour ¢ such that the colouring ¢, (u)cp, (v)
of uzv is extendable to the broken wheel W := G — {u/,v'}.

Suppose that there is a colouring ¢, € C, such that, for every colouring
u € Cy, either L(z) = {pu(u), pu(t'), pu(v), 0, (V) }, or @u(u’) = @, (v').

When we write ¢d € C,, we mean that ¢ is the colour of v" and d is
the colour of v, similarly for C,.

Suppose that L(z) = {a,b,¢c,d}, cd € C,, and C, consists of a subset
of {ab,ba} and colourings that give v’ the colour ¢ (or we say start with

¢). This means that there are at least two colourings starting with ¢ in

Cu-

Claim 4.2.7. C, does not contain dc.

Proof. Suppose for a contradiction that C, contains dc. If v and v are
adjacent, then the colouring de¢ for v'v and one of the two colourings
starting with ¢ in C, make a proper colouring of the cycle uu/v'vu. This
colouring is extendable to x since v’ and v are both coloured c.

Thus, u and v are not adjacent. If the colouring dc for v'v with the two
colourings starting with ¢ in C, force uzv to be coloured by a colouring
not extendable to the broken wheel W, then the two colourings starting
with ¢ in C, are ca and cb, and the bad colourings of uzv for W are the
permutations of {a,b, c}.

Now we prove that any colouring in C, either starts with ¢ or d. Sup-
pose there is a colouring ¢ in C, that starts with e, where e ¢ {c,d}. If
@(v) is not in {a, b, c}, then we colour v'v with ¢. This guarantees that
all the bad colourings of uxv are avoided. Then, we colour u'u by any of
the colourings in C, that start with ¢, then extend the colouring of uu'v'v
to x and then to W.

Thus, ¢(v) is in {a,b,c}. If ¢ = ec, then when we colour v'v with ec
and v'u with any of ca or ¢b, we can colour x with d and hence have the

bad colourings of uxv avoided. If ¢ = ea (eb), then we colour v'v with
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¢ and colour u'u with ca (repectively cb). This guarantees that the bad
colourings of uxv are avoided.
Thus C, is the union of {cd, dc} and:

(1) a dictatorship with dictator v' in which the colour of v’ is ¢,
(11) a dictatorship with dictator v' in which the colour of V' is d, or
(1ii) a colouring cf with f # d, and a colouring dg with g # c.

In the cases (i) and (iii), there is a colouring c¢f in C, such that f # d.
We colour v'v with ¢f and w'u with ab, then we colour x with d. This
avoids all the bad colourings of uzv. In case (ii), there is a colouring dg in
C, such that g # c. If g ¢ {a,b}, then colouring v'v with dg avoids all the
bad colourings of uzv. If g = a (g = b), colour v'u with ca (repectively

cb). O

Now consider a colouring ¢ € C, that starts with a colour e # ¢. We

have the following three cases.
Case 1. ¢p(v) =c.

In this case, by Claim 4.2.7, e # d. Since C, contains cd but not dc,
and C, is a confederacy (a union of two governments), C, either contains
a colouring fd with f # ¢ (this is Case 2) or a colouring cf with f # d.
Thus, we assume C, contains a colouring cf with f # d.

Colour v'v with ¢ and v'u with ab. If the union of those two colourings

is not extendable to GG, then we have one of the follwing two cases.
Subcase 1.1. e = a.

If each of the two colourings starting with ¢ in C, with the colouring
¢ = ac for v'v does not extend to G, then those two colourings are cb and

cd and the bad colourings of uzv are the permutations of {b,d, c}. In this

case we colour v'v with ¢f, and «'u with ab.
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Subcase 1.2. bdc is a colouring of uxrv unextendable to W.

In this case we also colour v'v with c¢f, and u'u with ab.
Case 2. p(v) =d.

Recall that ¢(v') = e # ¢. If colouring v'v with ed and «'u with
ab does not extend to G, then the bad colourings of uxv are either the
permutations of {b, ¢, d} or two colourings, including bed, that give u and
v the colours b and d respectively.

Suppose that e # b. At least one of the two colourings in C, that start
with ¢ ends with a colour not in {¢, b}. Let ¢ be such a colouring. Colour
u'u with ¢ and v'v with ¢, and then colour x with b. This avoids the bad
colourings of uxv.

Thus, e = b. That is, the two colourings we know in C, are cd and bd.
If one of the colourings in C, that start with ¢ ends with a colour not in
{a, b}, then giving this colouring to «'u and ¢ = bd to v'v avoids the bad
colourings of uxv and allows x to be coloured a.

Thus, the two colourings in C, that start with ¢ are ca and cb. If
colouring u'u with ¢b and v'v with bd does not avoid the bad colourings
of uxv, then the bad colourings of uzv are bed and bad.

Since C, is a confederacy, it is not a government, and so not a dicta-
torship with dictator v. Thus, there is a colouring in C, that ends with
a colour different from d. Let ¢’ be such a colouring. If ¢/(v") # a, then
colour w'u with ab and v'v with ¢'. Since ¢'(v) # d, the bad colourings of
uxv are avoided, and we just need to show that there is a colour available
for x. If ¢'(v") # d as well, then x can be coloured d. If ¢'(v') = d, then
¢'(v) # ¢ by Claim 4.2.7, and so we can colour z by c.

Thus, ¢'(v") = a. Colour v'u with ca and v'v with ¢'. Since ¢'(v) # d,

x can be coloured with d.

Case 3. ¢(v) ¢ {c,d}.
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Let f denote ¢(v). Thus, ¢ = ef. If colouring v'v with ¢ and v'u
with ab is not extendable, then bcf is a bad colouring of uzv. Thus, with
v coloured f, the bad colourings of uz are either {bc, cb} or {bc,bg} for
g # c

At least one of the two colourings in C, that start with ¢ ends with
a colour different from b. Let ¢ be such a colouring. Colour v'u with
and v'v with ¢. This avoids the bad colourings of uzv but may not be
extendable to x. If p U1 is not extendable to x, then either ) = ca and
@ = db (¢ # bd since f # d), or 1) = ¢d and ¢ = ab or ba. We consider
only one of those three possibilities, the other ones can be proved using
similar arguments.

If there is in C, a colouring that starts with ¢ and ends with a colour
not in {a, b}, then the union of this colouring for «'u and db for v'v extends
to G. Thus, the two colourings in C, that start with ¢ are ca and cb.

If the colouring c¢b for w'u, as ab, union the colouring db for v'v does
not extend to G, then bab as bcb are bad colourings for uxv. We may
assume the harder case without loss of generality, that is bab and bcb are
not the only bad colourings of uzv, but also aba, aca, cbc, and cac.

Note that the colourings in C, that we know are cd and db, and they
are in two different governments. If C, contains a colouring that starts
with ¢ and ends with a colour not in {d, b}, then colouring v'v with that
colouring and u'u with ab extends to G.

Thus, the second colouring in the government containing cd in C, is
cb. If C, contains a colouring that starts with d different from db, then
colouring v’'v by that colouring and u'u with ab extends to G since dc is
not in C, by Claim 4.2.7.

If C, contains a colouring that ends with b different from db and cb,
then colouring v'v with that colouring and u'u with ca extends to G. Also
from Case 2 we know that C, does not contain a colouring that ends with
d different from cd, in particular it does not contain bd. Thus, cb is the
only colouring in the government containing db in C,.

Now we know that C, contains {ab, cb, ca}, and C, = {cd, cb, db}. We

colour v/u with ab and v'v with ¢b. Then, x can be coloured d, and so
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the bad colourings of uxv are avoided. ]

4.3 An Extension of a Theorem of Thomassen

In this section we state and prove our extension of Theorem 3.2.4 of

Thomassen.

Theorem 4.3.1. Let (G, P, L,x) be a canvas, where P is a path of length
at most two. Given a fived L-colouring ¢ of P, then G has an L-colouring

extending ¢ unless:

(a) P has length one and G contains a 3-restricted subcanvas that is a

wheel with centre x; or
(b) P has length two and G contains:

(1) a 4-restricted subcanvas that is a wheel with centre x;

(11) a 3-restricted subcanvas that is a wheel of wheels containing x
(either as its centre or the centre of one of the smaller wheel

sections);

(111) a 3-restricted semi-subcanvas that is a broken wheel with major
vertex x and principal path whose end-vertices are the end-

vertices of P; or
(iv) a 3-restricted subcanvas that is a generalized wheel that does

not contain x as an inner vertex.

Proof. This is an adaptation of Thomassen’s proof of 3.2.4. Let G be a
minimum conterexample. We assume without loss of generality that G is

a near-triangulation.

Claim 4.3.2. G is 2-connected.

Proof. 1f G has a cut vertex, we colour the block containing x by minimal-
ity then colour the rest of the graph either by Theorem 3.2.6 or Theorem
3.2.4. O
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Now let C' := vjvs - - - vv1 be the outer cycle of G and suppose that
P = v, P = vv; or P = vvv;, in case P is of length zero, one or two

respectively.

Claim 4.3.3. |C| > 6, there are no separating triangles, and if there is a
separating 4-cycle then its interior consists of x only (in particular there

is no separating 4-cycle with all its interior vertices having 5-lists).

Proof. (1) |C| > 4 and there are no separating triangles.

Assume for a contradiction that |C] = 3 or that there is a separat-
ing 3-cycle. Let C” be a 3-cycle with nonempty interior such that
the subgraph induced by C’ and its interior does not contain a sep-
arating 3-cycle. Note that C’ is C' in case G contains no separating
3-cycles. Colour C’" and its exterior by minimality, and let G’ be

the subgraph of G induced by the vertices in the interior of C".

Let L' be the list assignment of G’ such that, for every v € V(G'),
L'(v) is obtained from L(v) by deleting the colours of the neighbours

of v in C’. By minimality, this theorem, and so also Proposition
2.2.4, is true for G'. Thus, G' is L' colourable by Lemma 2.2.5.

(2) |C| > 5 and if there is a separating 4-cycle then its interior consists

of x only, and x is adjacent to all the four vertices of the cycle.

Assume that |C| = 4 or that there is a separating 4-cycle. Let C’ be
a 4-cycle with nonempty interior such that the subgraph induced by
C" and its interior does not contain a separating 4-cycle. Note that
(" is C' in case G contains no separating 4-cycles. Colour ¢’ and
its exterior by minimality, and let G’ be the subgraph of G induced

by the vertices in the interior of C".

Let L' be the list assignment of G’ such that, for every v € V(G'),
L'(v) is obtained from L(v) by deleting the colours of the neighbours
of v in C’. By minimality, this theorem, and so also Proposition
2.2.4, is true for G'. Thus, if x is not adjacent to all the vertices of
C’, G'is L' colourable by Lemma 2.2.6.
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(3) IC] = 6.

Suppose that |C| = 5. There is no 5-list vertex that is adjacent to
all the vertices of C' since there are no separating triangles and we

assumed that z is in the interior of C.

The 4-list vertex x is not adjacent to all the vertices of C since this
is one of the obstructions in case P has length at least 1 and in
case P has length is a vertex or is empty this wheel with centre x

is colourable.

We saw in the preceding paragraph that x is not adjacent to all
5-vertices of C'. Since G is a near-triangulation and there are no
separating 4-cycles with only interior 5-lists, x is not adjacent to
four vertices of C. Such a wheel with centre x is an obstruction in
case P has length at least one, but in case P is empty or is a vertex,
G is colourable (G consists of a vertex of degree two joined to a
wheel with centre x whose outer cycle is of length four). Therefore,

if there is a vertex adjacent to four vertices of C', it is not z.

Suppose there is a vertex v in the interior of C' adjacent to four ver-
tices of C'; there is at most one such vertex. This divides the interior
of C into three triangles and one 4-cycle. Let C” be the 4-cycle. Be-
cause there are no separating triangles, all the vertices other than
v in the interior of C' are in the interior of C’; in particular, z is in

the interior of C'.

By (2), x is the only vertex in the interior of C’. By (1), and since
(G is a near triangulation, x is adjacent to all the vertices of C’.
Thus, G is a double-centred wheel with centres v and x. This yields
the contradiction that G is either L-colourable or an obstruction,

depending on whether P has length less than two or equal to two.

Thus, we may assume that every interior vertex of C' is adjacent to
at most three vertices of C'. If there are three vertices in the interior
of C' such that each one of them has three neighbours in C'; then

there is a separating 4-cycle with interior consisiting of 5-lists only.
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Thus, there can be at most two vertices in the interior of C' that are
adjacent to three vertices of C. If there is exactly one vertex in the
interior of C' that is adjacent to three vertices of C' we can colour the

interior of C' by colouring the block containing that vertex first.

If there are two vertices in the interior of C' that are adjacent to
three vertices of C', we colour C first. Then we may need to colour
a block in which all the interior vertices have 5-lists, there are three
2-lists on its outer walk and all the other vertices on the outer walk
have 4-lists, or a block that contains x in its interior, has two outer
2-lists, one outer 3-list and all the other lists on the outer walk are
4-lists.

Both types of block are colourable by deleting (the appropriate) one
of the outer 2-lists or 3-list. Then, whether the deleted vertex is on a
chord of the block or not, the resulting smaller blocks are colourable.
We may need to delete one vertex from one of the smaller blocks to

colour it by minimality or Theorems 3.2.6, 3.2.7, or 3.2.8.

Therefore every vertex in the interior of C' is adjacent to at most
two vertices of C' and so the interior of C'is colourable by colouring

the block containing x first.
O

Claim 4.3.4. C has no chords.

Proof. (1) If there is a chord that has x and P on one side, colour that
side first (and if P is empty, colour the side containing z first), then
colour the other side by Theorem 3.2.6.

(2) If P consists of a vertex and there is a chord that has P and x on
different sides, choose the closest such chord to x. Colour the side
containing P first by Theorem 3.2.6. Since G is a counterexample,
this colouring is unextendable to the side containing z, and so by
minimality, this side contains a 3-restricted wheel subcanvas with
centre x. This subcanvas contains the chord since there are no

closer chords to x that separate it from P, and then, in fact, this
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L(U1> = {2}7 L(U2> = {3}7 L(Ui’)) = {17273}7 L<U4) = {17273}a

L(vs) ={1,2,3,4}, L(veg) = {2,3,4}, L(v7) ={2,3,5}, L(vs) = {2,3,5},

L(vg) ={1,2,3}, L(vy) = {1} and L(z) = {1, 2, 3,4}.

Figure 4.10: uncolourable even though one of the vertices on the outer
cycle has a list of size greater than three; |L(vy)| = 4.

subcanvas is all of the side containing z since by (1) there is no
chord that has x and P on the same side. By Lemma 4.2.1, there
is at most one colouring of the chord that is unextendable to the
side containing x. By Lemma 3.3.9 there is a colouring of the side
containing P that avoids the unique unextendable colouring to the

side containing .

If P has length one and there is a chord that has P and x on
different sides, also choose such a chord that is closest to x. As
in (2) if we colour the side containing P by Theorem 3.2.6, then,
since this is a counterexample, this colouring is not extendable to
the other side. Thus, the side containing x is a wheel with centre
x. If we show that the end-vertices of the chord both have lists of
size at most three then this wheel is a 3-restricted subcanvas and
so we have a contradiction (since now, as P has length one, this is

an obstruction).

We know by Lemma 4.2.1 that it is at most one colouring of the
chord that is unextendable to the wheel with centre z. If one end-

vertex of the chord has more than three colours, we delete the colour
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involved in the unique unextendable colouring from its list. After
deleting that colour, the side containing P is still colourable by The-
orem 3.2.6 and that colouring is extendable to the side containing
x since we deleted the colour involved in its unique unextendable

colouring.

If P has length two and there is a chord that has P and x on different
sides, we can colour the side containing P by Theorem 3.2.4 (it does
not contain an obstruction since the obstructions of Theorem 3.2.4
are a subset of the obstructions of this theorem). The rest of the
argument is the same as that in (3) except that now we need to
argue that the end-vertices of the chord both have lists of size at

most four.

If one end-vertex of the chord has a list of size greater than four,
we delete from its list the unique colour involved in the colouring
of the chord unextendable to the side containing x. This deletion
does not introduce any new 3-lists, and since the all the possible
obstructions to colouring the side containing P are 3-restricted by
Theorem 3.2.4, it is still colourable. This colouring is extendable to
the side containing z, a contradiction. Thus the wheel with centre

x is a 4-restricted subcanvas, a contradiction.

If P has length two and there is a chord that has v;, the middle

vertex of P, as one end-vertex, there are two cases.

Case 1. There are such chords on both sides of x.

Choose the closest such chords to z on both sides. Now the graph is
divided into three parts. The outer parts are colourable by Theorem
3.2.6, but this colouring is not extendable to the middle part since
this is a counterexample. From this, and by our choice of the chords,
by (1) and (4) of this claim, and by (2) of Claim 4.3.3, the middle
part is either a wheel with centre x or a wheel of wheels containing

x.
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Let v; and v; be the end-vertices of the two chords different from
v;. Note that v; and v; are not adjacent in C' since there are no

separating triangles.

In case the middle subgraph is a wheel with centre x, in order to
have a contradiction, we need to show that neither of the two corner
vertices, v; and v;, between it and the other two parts has a list of
size bigger than four. In case the middle part is a wheel of wheels
that is not a wheel, we need to show that each corner vertex has a

list of size at most three.

Let A; denote the part adjacent to vyv; and A; denote the part
adjacent to viv;. Assume without loss of generality that ¢ < j and
that v; has a list of size greater than four if the middle part is
a wheel, and greater than three if it is a wheel of wheels that is
not a wheel. Then, if j = k£ — 1, delete from L(v;) the colour of
v. If j # k —1 and A;j is a broken wheel, then A; — v; is also a
broken wheel. Since G does not contain a 3-restricted broken wheel
subcanvas, at least one of the vertices v; with 7 < [ < k has a list
of size greater than three, and so all the colours of v; are good for
A; in this case. If A; is not a broken wheel delete from L(v;) the
colour involved in the unique unextendable colouring of v;v;v; to
A;.
Colour v; (the other corner vertex) by a colour different from that
involved in the unique unextendable colouring of A; if A; is not a
broken wheel. If i = 3, colour v; by a colour different from that
of vy. If ¢ # 3 and A; is a broken wheel, then at least one of the
vertices v; with 2 < [ < i has a list of size greater than three. Thus,
we can colour v; by any colour in this case and have the colouring

of v;v1v9 extendable to A;.

Now we can colour the middle part. If it is a wheel with centre x we
colour it by colouring x then colouring the vertices from v; toward
v; (v; is colourable since it still has at least four colours and it has

degree 3 in the middle part).
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If it is a wheel of wheels, since we assumed that |L(v;)| > 3 and have
deleted at most one colour from it, it still contains a colour differ-
ent from that of v; and the colour involved in the unique colouring,
given by Lemmas 4.2.4 and 4.2.5, of v;v;v; unextendable to the
wheel of wheels. We colour v; with this colour then colour the
wheel of wheels. Note that there are no separating 4-cycles with
interiors consisting of 5-lists only and no separating triangles, and

so the conditions of the lemmas are satisfied.

Case 2. There are chords only on one side of x.

Also choose the closest such chord to z. The side not containing x is
colourable but the colouring is not extendable to the side containing
x, and so the side containing x is either a wheel with centre = or a
wheel of wheels. In case it is a wheel, then, as before, the corner
vertex cannot have more than four colours. In case it is a wheel of
wheels, then, as before, the corner vertex cannot have more than
three colours. Thus we have a contradiction in both cases.

]

Claim 4.3.5. Let u be an inner vertex that is joined to two vertices v and
w on C' such that P is contained in one of the two vw-paths in C'. Let H
be the subgraph bounded by vuw and the vw-path in C' not containing P.

Then H is either a broken wheel or a wheel with centre x.

Proof. Case 1. u = .

Assume H is not a broken wheel. Suppose we have chosen the clos-
est two such vertices (v and w) to P. The side of vzw containing P
is colourable since it has a list of size greater than three on its outer
boundary; L(x).

Since this is a counter-example, this colouring is not extendable to H.
Then, by Theorem 3.2.4 and Claim 4.3.4, H is a generalized wheel with
principal path vxw and with all outer boundary vertices other than v and

w having lists of size exactly three. Delete from the list of x the colour

73



of the unique unextendable colouring of vxw to H. If the side of vzw
containing P is colourable after deleting that colour, we colour it then

colour H, a contradiction.

If the side of vxw containing P is not colourable after deleting that
colour, this means it is a generalized wheel with principal path P and all
its outer lists other than those of P are of size three. Since this subgraph
(the side of vxw containing P) cannot contain any chords other than vz,

it is either a wheel or a union of two wheels that intersect only in v;z.

Therefore, the union of the two sides of vxw, that is G, is a wheel of
wheels with all outer lists other than those of P of size three, contradict-

ing the hypothesis of the theorem.

Case 2. |L(u)| =5 and x is on the same side of vux as P.

Assume that H is not a broken wheel and again suppose that v and w
are chosen closest to P. The side containing P and x is colourable since
it has a list of size greater than three on its outer boundary; |L(u)| (the
obstruction to colouring this side cannot be a wheel with centre x because
of Case 1). We can delete from the list of u the colour of the unique unex-
tendable colouring to H. After deleting that colour, L(u) still has at least

four colours and so the side of vuw containing P and x is still colourable.

Case 3. u has a 5-list and x and P are on different sides of vuw. In this
case assume that v and w, contrary to the previous two cases, are chosen
furthest from P.

We can colour the side containing P, but this colouring is not extend-
able to the other side. Thus the side containing x is (not just contains,
because of the choice “furthest”) either a wheel with centre x (in that
case we are done) or is a wheel of wheels. If this side contains a broken
wheel semi-subcanvas with principal path uxw then, since this is a near-
triangulation and there are no chords (that is v and w are not adjacent

on a chord), = is adjacent to u and this side is again a wheel with centre
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If it is a wheel of wheels, it has only one unextendable colouring and we
can delete its colour from the list of u and still have the side containing P
colourable since u has then a list of size at least four. All the obstructions
to colouring that side should have lists of size exactly three on their outer
boundary and they contain u since there are no chords in G.

Finally, after colouring the side of vuw containing P, we colour the
side containing = (which is colourable now since the colour of u involved in
the unique bad colouring of vuw was deleted from L(u) before colouring

the side containing P). O

Claim 4.3.6. If P has length at least one, then no interior neighbour is
adjacent to two vertices that are the ends of a path @ in C' of length at
most two such that P C Q).

Proof. Suppose that there is such an inner vertex uw. If u = x, then by
Claim 4.3.5, part (2) of Claim 4.3.3 (no separating 4-cycles with interior
all 5-lists) and Claim 4.3.4 (no chords), we have that G is a wheel with
centre x. FEach outer vertex cannot have a list of size greater than 3,
since otherwise we can colour the wheel. This is one of the obstructions,
a contradiction.

Thus |L(u)| = 5. Suppose first that P and x are on different sides of
vouvy, (or vauvy). Then by Claim 4.3.5, = is adjacent to vy and vy, a con-
tradiction since there are no separating 4-cycles with interiors consisting
of 5-lists only and no separating triangles at all.

Now suppose that P and x are on the same side of vg,u,vi. The
subgraph W bounded by uwvs - --vpu is a broken wheel by Claim 4.3.5.
Colour W; the cycle vyvauvgvy or viveuwvy is now coloured. By (1) and (2)
in Claim 4.3.3, the interior of vivouv,v; or viveuwy is colourable unless x
is adjacent to all the vertices of this cycle.

Now if the interior of this cycle is colourable, we have a colouring of G
and so have a contradiction. If it is not colourable, GG is a double-centred
wheel (a union of a wheel with centre z and a broken wheel with major

vertex u). This is also a contradiction because every uncoloured vertex
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on C has a list of size exactly three since otherwise we can colour the

wheel with centre z first and extend any colouring that veuvy receives to
the broken wheel W. O]

Claim 4.3.7. We may assume that P has length at least one.

Proof. To prove this we need to show that the graph does not contain
a wheel subcanvas with centre z even if P has length less than one (i.e.
empty or consisting of exactly one vertex). Then we can colour an edge
or a neighbour of the precoloured vertex to turn our counterexample into
one with a precoloured path of length one.

If the graph contains a wheel subcanvas with centre x, it must be all of
the graph since we proved before that there are no chords. By Lemma
4.2.1, a wheel with centre a 4-list without precoloured vertices or with

only one precoloured vertex is colourable. ]
Claim 4.3.8. x is not adjacent to both vs and vj_y.

Proof. If both v3 and v,_; are adjacent to x, then let G’ be the graph
bounded by the cycle C" := v v9v3zv)_1v,v1, and let W be the broken
wheel bounded by zvs---vx_1x (we know that W is a broken wheel by
Claim 4.3.5). Note that the interior of C” consists of 5-lists only.

Colour W first. Then colour the interior of the now-coloured C” as
follows. If every vertex in the interior of C” is adjacent to at most two
vertices in C’, then the result follows from Theorem 3.2.6.

If every vertex in the interior of C” is adjacent to at most three vertices
of C’, then there are at most three vertices each adjacent to three vertices
of C". If there are three such vertices, then they have 2-lists after deleting
the colours of their neighbours in C’; and every other vertex in the interior
of C" has a list of size at least four. In this case, any block in the interior of
(' can be coloured as follows. Delete one of the 2-lists, then the resulting
graph is colourable either by Theorem 3.2.7 or Theorem 3.2.8.

If there are two such vertices, then all the other interior vertices of C”,
except possibly one, are adjacent to at most one vertex of C’. Thus, the

interior is colourable, block after block, by Theorem 3.2.7.
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Therefore, we may assume that there are vertices in the interior of
C’ adjacent to more than three vertices of C’. There can be at most
two vertices adjacent to four vertices of C’. Suppose there are two such
vertices y and z. Then all the other interior vertices of C’ are adjacent to
at most one vertex of C".

The vertices y and z may be the only vertices in the interior of C" and
they may be adjacent. Otherwise, the interior of C’ is colourable, block
after block, by Theorem 3.2.7.

In case the interior of C” consists of y and z, we colour G as follows.
Note first that the interior of G consists of the three vertices x, y and z.
The vertices x, y and z make a triangle, y is adjacent to vy, vs,v3, 2 is
adjacent to vy, vk, vp_1, and x is adjacent to vs, - -+, vgp_1.

By Lemma 3.2.11, there is a set S of size 3 such that the colours
of v, x,vx_1, that appear in colourings of vzzrvg_; unextendable to the
broken wheel bounded by zwvs---vp_1x, are all contained in S. Since
|L(z)| > 4, there is a colour ¢ in L(z) \ S.

If L(vs)\{p(va)} = {c,d}, L(vg—1)\{¢(vx)} = {c,d'} for some colours
dand d, L(y) = {p(v), (v2), d,c, e}, and L(2) = {ip(v1), plvg_1), &', e}
for some colour e, then colour w3 by ¢, colour v,_; by d’, and colour
x by any other colour f (f may equal e). This colouring of vszvg_;
is extendable to the broken wheel bounded by zvs---v,_1z and L(y) \
{o(v1), (va), e, f} # L(z) \ {p(v1), p(vk-1),d’, f}. Thus, the colouring is
also extendable to y and z.

Otherwise, colour = by ¢, then colour v3 and v;_; by colours such that
the remaining available colours in L(y) and L(z) are different.

If there is a vertex adjacent to four vertices of C' and a vertex adjacent
to three vertices of C’, then there can be at most one vertex of the re-
maining vertices that is adjacent to two vertices of C’ and so the interior
is colourable, block after block, by Theorem 3.2.7 in this case also.

Therefore, we may assume there are vertices adjacent to more than
four vertices of C’. Now since there are no sparating 4-cycles with interior
5-lists only, the interior of the cycle consists of only one vertex that is

either adjacent to all the vertices of the cycle or to only five of them.
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Actually it is adjacent to all of them since this is a triangulation and any
chord of this cycle is either a chord of the outer cycle of G as well or is a
chord connecting x to a vertex of P and so creates a bigger broken wheel
containing W that we can consider to be V.

Note that the fact that any cycle, whose interior is not empty, inside
(" is a separating cycle follows from the fact that there are vertices outside
C" since |C| > 6 by Claim 4.3.3 and only five vertices of C' are in C".

Now we have a contradiction since one side of vzrvg_; is a wheel (the
interior of C”) and the other is a broken wheel, namely W, and so G is a
wheel of wheels. This wheel of wheels has all its outer boundary vertices,
except for those in P, having lists of size exactly three since first if a
vertex in V(C) — V(C”) has a list of size greater than three. We can
colour G’ first then colour W.

Second, if one of v3 and v,_; has a list of size greater than three, say
|L(v3)| > 3, then there is a colour in L(v3) that avoids all the colourings
of vzzvp_1 unextendable to W. Colour vs with that colour, colour the

centre of G', colour v;_1, colour x, then colour W. O]

We may assume without loss of generality that v3 is not adjacent to
x. Consider the subgraph G —v3, choose two colours from L(vs) \ {¢(vs2)}
and delete them from the lists of the neighbours of vz other than wvy,
let L' be the resulting list assignment. By induction, if G — v3 does not
contain any of the obstructions, then it is L’-colourable, then its colouring
is extendable to GG, a contradiction. Therefore G — v3 contains one of the
obstructions B.

Since B is not an obstruction of G, B contains at least one vertex in
the interior of C that is a neighbour of v3. Since there are no separating 4-
cycles with interior consisting of neighbours of v3 only, and since C' has no
chords, G —v3 is not a wheel. Therefore, G — v3 is either a double-centred
wheel or a wheel of wheels, or B is a proper subgraph of G — vs.

Let wy, - -+ ,w, be the neighbours of v3 in the interior of C' from vy to
vg. If G — v3 has a proper subgraph that is one of the obstructions, then
there are i and j, 1 <i<nandje{l,--- k}\{2,3,4}, such that w; is

adjacent to v;. Let s be the maximum such j different from 1, if exists,
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and let s be 4 otherwise. Let r be the minimum ¢ such that w; is adjacent
to vs. By Claim 4.3.5, the subgraph bounded by w,vsvy - - - vsw, is either
a broken wheel or a wheel with centre x. However, v is not adjacent to
x, so it is a broken wheel.

If the subgraph H bounded by vyvowy - - - w, v - - - vv1 does not contain
one of the obstructions, then it is colourable by minimality. Then the
colouring of w,v, is extendable to the broken wheel bounded by w,vy - - - v
w, by Theorem 3.2.6. This gives a colouring of G' — v3, extendable to G,
a contradiction.

Therefore, H contains one of the obstructions. By the choice of r
and s, and since C' has no chords, this obstruction is either H itself, or
one of wy, - -+, w, is adjacent to vy, say w; is, and the subgraph bounded
by viw; - - - wyvg - - - Vw1 is one of the obstructions. But since there is no
separating 4-cycle with interior containing vertices other than z, 1 = 1,
and there are at most three neighbours of v3 in the interior of C'. We

summarize this in the following claim.

Claim 4.3.9. There are at most three neighbours of vs in the interior
of C, and if H is not an obstruction, then wy is adjacent to vy and the

subgraph By of H bounded by vyw; - - - w,vs - - - Vpv1 18 an obstruction.

We consider every possible case for the obstruction By contained in
H, a wheel (as a proper subgraph of G — v3), a generalized wheel, a
double-centred wheel, and a wheel of wheels, and we consider with every
case the two cases of whether or not w; is adjacent to v.

By the choice of r and s, by Claim 4.3.6 and Claim 4.3.5, if By is a
generalized wheel, then it is a wheel.

In case By is a wheel, since G is not a double-centred wheel, By can
only be as shown in Figure 4.11, that is v3 has exactly two neighbours in
the interior of C', those two neighbours are w; and ws, w; is adjacent to
vy, wo is adjacent to v; for some i > 4, and if ¢ is the maximum such 1,

then the subgraph bounded by vywiwsv; - - - viv;1 is a wheel with centre x.

Case 1. By is a wheel.
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V11

V10

U7

Figure 4.11: The obstruction is a wheel.

In this case we colour G as follows (See Figure 4.11). We colour zv;
and v3wsy so as to avoid the colourings of vyzv; and v3wyvy unextendable
to the respective broken wheels. Colour v; by a colour that avoids the

bad colourings of zv; and then colour .

If with the colour v; has now, there is only one colour of v3 that can
make the colouring of vswsv; bad, colour vs by a different colour, colour
wi then colour wy. If the bad colourings of v3w, with the now fixed colour
of v; are ab and ba, let ¢ be a colour in L(wy) different from a, b, the colour
of x and the colour of wy. If ¢ is not in L(wq) \ {¢(v1), ¢(v2)}, colour wsy

by ¢, colour vs, then colour wy.

If ¢ € L(wy) \ {¢(v1),p(ve)}, then colour vy by the same colour of
x in case the colour of z is one of a or b, and in case the colour of
x is neither a nor b, colour vz by the colour of a and b that is not in
L(wq) \ {e(v1), p(v2)}. In case both a and b with the colour of z and ¢
are in L(wy) \ {¢(v1), p(ve)}, this means that |L(w;)| > 6 and there is no
problem in the first place, also in case v3 contains a colour different from

a and b there is no problem. Finally colour ws by c.

Case 2. G — vz is a double-centred wheel.
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V10
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Figure 4.12: G — v3 is a double-centred wheel.

In this case, G can only be as shown in Figure 4.12, that is v3 has
exactly one neighbour, wy, in the interior of C' and x is adjacent to only
wi, v; and ve and the second centre, y. We colour G as follows. After
choosing two colours in L(v3) and deleting them from the lists of the
neighbours of v3 in the interior of C', we colour yw; such that the colouring

of vpyw, is extendable to the broken wheel bounded by viywivy - - - vy

If only one colour of w; is involved in bad colourings of w,yvy, colour
wy by a different colour, colour z then colour y. So suppose that the bad
colourings of yw; are ab and ba. If there is a colour in L(w;) different from
a, b, p(vy) and the two colours kept for vs, colour w; with that colour,
colour x then colour y. Therefore, we may assume that the only colours

in L(w,) different from ¢(v9) and the two colours kept for v are a and
b.

Since |L(y)| > 5, there is a colour ¢ different from a and b in L(y) \
{¢(v1),o(vg)}. Since |L(x)| = 4, either one of a or b is not in L(x), or
one of ¢(vy) and ¢(vy) is a or b. In either case, there is a colour of a and
b that if we colour w; with, x still has two available colours. Colour w,

by the appropriate colour of a and b, colour y by ¢ then colour x.

Case 3. By is a double-centred wheel.
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V11 V11

V10 V10

U7 U7

Figure 4.13: The obstruction contained in H is a double-centred wheel.

U1 U1

V11 V11

V10 V10

U7 U7

Figure 4.14: The obstruction contained in H is a double-centred wheel.

Let y be the centre different from z. We consider first the case when
vy and w; are adjacent to y, and x is the centre of a wheel bounded
by the cycle vyvawiyv; (See Figure 4.13). As in Case 2, we can colour
w1y, such that its colouring is extendable to the broken wheel bounded
by vpyw vs - - VY O Vpywiwavs - - - viy. After the double-centred wheel
is coloured, we can by Theorem 3.2.6 extend the colouring of wyv, to the
broken wheel bounded by wjvy - - - vswq, or extend the colouring of wyvy
to the broken wheel bounded by wsvy - - - vsws. Finally colour vs.

The remaining possibilities when the obstruction is a double-centred
wheel are shown in Figures 4.14, 4.15 and 4.16. In each of those possibil-

ities we consider the cases of whether or not the wheel centred at = has

82



V11 V11

V10 V10

U7 U7

Figure 4.15: The obstruction contained in H is a double-centred wheel.

V11 V11

V10 V10

(%4 U7

Figure 4.16: The obstruction contained in H is a double-centred wheel.
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its outer cycle of length four.

Let t be the unique index different from 1 such that both x and y
are adjacent to v; (t = 10 in Figures 4.14 and 4.15). The cases shown in
Figure 4.14 are when the other vertex to which both x and y are adjacent
is wy, and in Figure 4.15 this vertex is vy.

In the case shown in the left drawing of Figure 4.14, we colour G
as follows. If one of the colours in L(v;) that avoid the bad colourings
of vpxv, (for the broken wheel bounded by vgzv, - - vg) is not in L(z) \
{¢(v1), p(v2)}, we colour v; by such a colour, say ¢. We now colour vg by
a colour that avoids the bad colourings of v,yv, (with the now fixed colour
of v;), and if possible we choose it so as to also avoid the bad colourings
of vswyvy.

If it is not possible to choose the colour of v, so as to avoid the bad
colourings of vswyvse, then the bad colourings of v,w; are of the form ab
and ba. In any case by fixing the colour of v,, at least one of the two
colours left in the list of L(w;) makes the colouring of vsw;vy good.

Colour w; with such a colour, colour x (which is colourable even
though four of its neighbours are already coloured because v; is coloured
¢ which was chosen to be outside L(x) \ {¢(v1),¢(v2)}), then colour y
and extend the colourings to the respective broken wheels. If there is no
colour as ¢, then the good colourings of v, are of the form de and ed.

If one of e and d, say d, is such that colouring v; with it avoids the bad
colourings of vyv,, then colour vy with d, colour x with e, colour vy by
a colour that avoids the bad colourings of v,wyvy, colour wy, then colour
Y.

Therefore, we can assume that both d and e are colours of v; involved
in bad colourings of v;yvs. By Lemma 3.2.11, there is at most one more
colour (different from e and d) that appears in a bad colouring of vyv,
(either as a colour of v, y or vy), and so, since |L(y)| > 5, there are at
least two colours in L(y) \ {d, e} that avoid the bad colourings of v;yvs.

One of those two colours, say g, is different from the colour, say f, in
L(wy) \ {¢(v1), p(v2)} that avoids the bad colourings of vow;vs. Colour y

with g, colour wy; with f, then colour  with e or d depending on whether
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f=dor f=e, then colour v; and v;.

In the case shown in the right drawing of Figure 4.14, we use a new
argument than in the previous cases. Since, |L(vs) \ {p(v2)}| > 2 and
|L(w1)\{p(v1), o(v2)}]| > 3, there are two dictatorships for vzw; with dic-
tator vs. Let Cy,y, denote the union of those two dictatorships. Similarly,
there is a confederacy C,, ,, for vy_1y.

By Corollary 3.3.12, there is a confederacy Cy,., for wivs (s = 8 in this
drawing) such that every colouring of wy v, in C,,,, extends to a colouring
of the broken wheel bounded by w;vs - - - vsw; whose restriction to vsw;
is in Cyyyp, . Similarly, there is a confederacy C,,, for yv; that corresponds
to Cy,_,y in the subgraph bounded by vi_iyv; - - - v_1.

By Lemma 4.2.6, there is a colouring ¢ € C,,,, and a colouring ¢ €

1Vs
Cyv, such that ¢ U1 extends to a colouring of the wheel with centre z
(bounded by ywjvs - - - vyy).

The remaining subcases, shown in Figures 4.15 and 4.16, can be

coloured using similar techniques.

Case 4. G —v3 is a wheel of wheels that is neither a wheel nor a double-

centred wheel.

Again since there are no separating 4-cycles with interior consisting
only of neighbours of vz, there is exactly one neighbour w; of v3 in the
interior of C' and w, is adjacent to the centre of the wheel of wheels G —v3
(See Figure 4.17).

Let y be the centre of G — v3. By Claim 4.3.6, and since every section
of a wheel of wheels is either a wheel or a broken wheel, v; is also adjacent
to y. Now we have the 4-cycle vivowiyvy. Then either y is adjacent to
vy or the interior of this cycle consists of x alone and together with the
cycle they make a wheel.

By Claim 4.3.5 any wheel section of G — v3 that is not centred at x
either contains v; and v, or w; and vy, and since there is no separating 4-
cycle with interior that contains any vertex other than x, y is adjacent to

at most one of vy and vy and any 5-list vertex different from y is adjacent
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(%1 U1 U1

(%) V12 Vo V12 (] V12

Vs v U3
3
V11 V11 V11
Uy V10 V4 V10 V4 V10

Vs Vg Us Vg Vs (%)

Vg Ug Vg Vs (% Ug

U7 U7 U7

Figure 4.17: G — v3 is a wheel of wheels.

U1 U1 U1
V2 V12 (%) V12 U2 V12
U3 U3 U3
V11 V11 V11
Uy V10 V4 V10 V4 V10
Us Vg Us %) Vs Vg
Vg Vg Vg Vg Vg Vg
U7 U7 U7

Figure 4.18: The obstruction contained in H is a wheel of wheels.

to at most one of v; and w; if y # z.

Now we show how to colour G. If = is the centre of G — v3 then x
is adjacent to vy since there are no vertices in the interior of the 4-cycle
v1vewi vy (See the middle drawing of Figure 4.17). Since z is adjacent
to v9 and there is no separating 4-cycle with interior containing vertices

other than z, x is not adjacent to vy.

U1 U1 U1
V2 V12 V2 V12 V2 V12
U3 U3 U3
V11 V11 V11
Uy V10 V4 V10 V4 V10
Vs Vg Vs Vg Vs Vg
Vg Us (% Us Vg Us
U7 U7 U7

Figure 4.19: The obstruction contained in H is a wheel of wheels.
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V1 U1 U1

V2 V12 V2 V12 V2 V12
U3 U3 U3
V11 V11 V11
Uy V10 V4 V10 V4 V10
Vs () U Vg Vs Vg
(4 Us Ve Ug Vg Ug
U7 U7 U7

Figure 4.20: The obstruction contained in H is a wheel of wheels.

(%1
(% V12

U1 U1
(%) V12 V2 V12
U3 U3 U3
V11 V11 V11
Uy V10 V4 V10 V4 V10
Us Vo9 () Vg Vs Vg
Vg Vg Vg v Vg Vg v Vg

U7

Figure 4.21: The obstruction contained in H is a wheel of wheels.

(o U1
Uz 2112 Vg V19
U3 v
V11 3 U11
V4 V10
‘ Us (s}
Ve Ug

U7

Figure 4.22: The obstruction contained in H is a wheel of wheels.

87



Therefore, if [ is the least number > 5 such that x is adjacent to vy,
the section bounded by xw vy - - - v;x is a wheel not a broken wheel. Con-
sequently, since this wheel section contains w;, which is an interior vertex
of C' different from x, if m is maximum such that z is adjacent to v,,, the
subgraph bounded by zwvs - -- v, does not contain a generalized wheel
subcanvas with principal path vexv,,. By Theorem 3.2.4, any colouring

of vezv,, is extendable to the subgraph bounded by zvy - - - v,,x.

By Claim 4.3.6, and since x is adjacent to vy, it is not adjacent to
vi. Therefore, the section bounded by vixv,, - -viv; is a wheel not a
broken wheel, and so by Lemma 3.2.10 there is at most one colouring of
xv1v, unextendable to that section. Colour x by a colour different from
its colour in that colouring of xv v, extend the colouring to the section
bounded by vyxv,, - - - vxvy, then extend it to the subgraph bounded by
TV -+ Upp X
We can suppose now that the centre y is different from x. Let [ and m,
different from 1, 2 and 3, be minimum and maximum respectively such

that y is adjacent to v; and v,,.

Choose two colours in L(vs) \ {¢(v2)} and delete them from L(wy).
Consider first the case when z is the centre of the 4-cycle vivowiyvy.
Suppose that y is adjacent to vg. If L(z) \ {p(v1), p(ve)} is equal to the
set of two colours in L(w;) that remain after deleting the two chosen

colours for v3 and deleting ¢(vy), let this set be {a,b}.

Colour y by a colour different from ¢(vy) (if it is coloured, that is
if [V(P)| = 3, and if it is not coloured, colour it first), ¢(v1), a and
b. Then colour xw; either ab or ba depending on which of them makes
the colouring of wiyvy (with the now two fixed colours of y and ¢(vy))
extendable to the subgraph bounded by wviyw vy ---vi. Finally, colour

this subgraph then colour v3 by a colour different from the colour of vy.

If L(x) \ {¢(v1),p(v2)} = {a,b} and the two colours remaining in
L(wy) after deleting the two chosen colours for vs and deleting ¢(vs)
include a colour ¢ ¢ {a, b}, colour y by a colour different from ¢(v;) and
©(vx) and the colour of the unique colouring of w;yv; unextendable to

the subgraph bounded by vpywivy - - - vg.
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If the colour given to y is ¢, colour w; first (still has one colour in its
list) then colour x (a and b are different from c). If it is different from
¢, colour x (by a or b) then colour w; by ¢. Extend the colouring to the
subgraph bounded by vpywivy - - - vg then to vs.

Therefore, in case x is the centre of the 4-cycle vyvow yvy, we may
assume that y is not adjacent to v, and so the section bounded by
V1YV, - - - V01 18 & wheel not a broken wheel. But note that now the
subgraph bounded by v,,ywivy - - - v, may be a broken wheel as in the
leftmost drawing of Figure 4.17.

Again if L(x) \ {p(v1), p(ve)} = {a,b} and the two available colours
for wy are also a and b, colour y by a colour different from ¢(v), a, b
and the colour of the unique colouring of yv,v; unextendable to the wheel
section bounded by viyv,, - - - vgvy.

Extend the colouring to the wheel section bounded by vyv,, - - - viv1,
then colour zw; either ab or ba depending on which of them makes the
colouring of wyyv,, extendable to the subgraph bounded by v, yw v4 - - - vy,
(since now y and v, are coloured, it is only one colour of w; that can
make the colouring of wyyv,, bad).

If wy; has an available colour ¢ different from a and b, then if the
colour y receives from the colouring described above is ¢, we have only
one colour left to colour w; with and which may make the colouring of
w1yv, unextendable to the subgraph bounded by v, ywivy - - - vyy,.

Let z be the centre of the wheel bounded by vyyv,, - - - vyv;. We colour
wy by ¢ then try to colour y, v, and z such that the colourings of wyyv,,
and vgzv,, are extendable to the respective broken wheels. With the now
fixed colours of w; and ¢(vy) there are two possibilities for the type of
the bad colourings of yv,, and two possibilities for the types of the bad
colourings of zv,, (cf. Lemma 3.2.11).

If the bad colourings of yv,, are de and ed and the bad colourings of
2vp, are fg and gf, colour v, by a colour different from f and g, by this
we have avoided the bad colourings of zv,,. If this colour is different from
d and e, then we have also avoided the bad colourings of yv,,, and if it is

one of d and e then we still can colour y by a colour different from d, e,
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¢ and ¢(v1) and so avoid the bad colourings of yv,,. Then colour z and
extend the colourings to the respective broken wheels, and finally colour
vg and z (recall that w; is coloured ¢ ¢ L(z) \ {o(v1), p(v2)}).

If the two bad colourings of yv,, have v,, coloured the same and the
two bad colourings of zv,, have v,, coloured the same, we can avoid all
bad colourings by colouring v,, by the third colour (different from the
one involved in the bad colourings of v,,y and the one involved in the bad
colourings of v,,z).

If the bad colourings of yv,, are de and ed while the bad colourings
of v,,z involve only one colour f of v,,, colour v,, by the colour of d and
e different from f, colour y by a colour different from d, e, ¢ and p(v1),
then colour z. The case when the bad colourings of v,,z are fg and gf
and the bad colourings of v,,y have one colour for v, is similar.

Now we may assume that y is adjacent to vy (See the rightmost draw-
ing of Figure 4.17). Then by Claim 4.3.6, y is not adjacent to v, and
so the section bounded by vyyv,, - - - vpv; is a wheel not a broken wheel.
If this section is centred at z, then there are at most two colours of y
that with the given colours of v; and v, make the colouring of vivy
unextendable to this section.

Colour y by a colour different from those two colours and from ¢(v;)
and ¢(vy), and extend the colouring to the wheel section bounded by
V1YV, - - - Vp01. Now consider the subgraph bounded by yvs - - - v,,y, which
now has the path wvyyv,, coloured. Since y is adjacent to vy and there
is no separating 4-cycle with interior consisting of neighbours of wvs, y
is not adjacent to vy, and so the section bounded by ywivys--- vy is a
wheel not a broken wheel. This wheel contains an interior vertex of C
different from y, therefore, the subgraph bounded by yuvs - - - v,,,y does not
contain a generalized wheel subcanvas with principal path voyv,,, and so
the colouring of voyv,, is extendable to it by Theorem 3.2.4.

Suppose now that the wheel section bounded by vyyv,, - - - vpv; is cen-
tred at a 5-list vertex, and so the wheel section with centre x lies some-
where else, let ¢ be maximum such that v; is in the wheel section centred

at z. As we showed above the section bounded by yw vy - - - vy is a wheel,
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and so the subgraph bounded by ywvs - - - vy is colourable whatever colour-
ing is given to voyv; by Theorem 3.2.4.

Therefore, colour y by a colour different from ¢ (v;), ¢(vs), the colour
of the unique colouring of yv,v;, unextendable to the subgraph bounded by
UEU1YU; - - - g, and the colour of the unique colouring of yv; unextendable
to the wheel section centred at z. Extend the colouring to the subgraph
bounded by viv1yv; - - - v then to the wheel with centre x then to the rest
the subgraph bounded by viviyv; - - - v, so that vyvs is coloured, then

extend the colouring to the subgraph bounded by yuvs - - - vyy.

Case 5. By is a wheel of wheels that is neither a wheel nor a double-

centred wheel.

See Figures 4.18, 4.19, 4.20, 4.21, and 4.22. This case can be proved

by arguments similar to those of the preceding cases. O

4.4 An Extension of a Theorem of Postle

and Thomas

In this section we prove Theorem 2.1.3, which states that a plane graph
with two 2-lists on the outer walk and one inner 4-list is colourable if the
4-list vertex is not the centre of a wheel attached to the outer walk of
the graph. This is an extension of Theorem 3.2.8 of Postle and Thomas.
To prove their theorem, they proved a stronger theorem, Theorem 4.4.1,
below. We also prove Theorem 2.1.3 through a stronger theorem which
is an extension of Theorem 4.4.1. This is Theorem 4.4.2.

Excluding wheels with centre the 4-list vertex is not a necessary con-
dition, but it enables us to go on in the proof of Theorem 4.4.2 following
the method of Postle and Thomas in the proof of Theorem 4.4.1, [11,
Theorem 3.1].

The proofs of Claims 4.3.6 and 4.3.9 are different from the proofs of

the corresponding claims in Theorem 4.4.1. We use Corollaries 3.3.8 and
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3.3.12. Those corollaries were not used in the proof of Theorem 4.4.1.
However, in many parts, the proof of 4.4.2 is almost the same as the
proof of 4.4.1.

Theorem 4.4.1. [11] Let (G, S, L) be a canvas, where S has two compo-
nents: a path P and an isolated vertex u with |L(u)| > 2. Assume that
if [V(P)| > 2, then G is 2-connected, u is not adjacent to an internal
vertex of P and there does not exist a chord of the outer walk of G with
an end in P which separates a vertex of P from u. Let Ly be a set of size
two. If L(v) = Lo for all v € V(P), then G has an L-colouring, unless
L(u) = Ly and V(S) induces an odd cycle in G.

Theorem 4.4.2. Let (G, S, L,x) be a canvas such that S consists of a

path P and an isolated verter uw. Assume:
(a) all vertices of P have the same list Ly of size 2;

(b) if |V(P)| is 1 or 2, then x is not the centre of a wheel subcanvas of
G;

(c) if [V (P)| > 2, then x is not the centre of a wheel in G; and
(d) if |[V(P)| > 2, then:

1. G is 2-connected;
1. x 18 not adjacent to two vertices at an odd distance in P;
1. u 18 not adjacent to an internal vertex of P; and

iv. there is no chord of the outer walk of G having an end in P

that separates a vertex of P from u.

Then either G is L-colourable or L(u) = Lo and V(S) induces an
odd cycle in G.

Proof. Let (G, S, L,x) be a counterexample with |V (G)| minimum and,
subject to that, with |V (P)| maximum. Let C' be the outer walk of G.

Claim 4.4.3. G is 2-connected.
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Proof. Suppose for a contradiction that G is not 2-connected. Then by
assumption (d) — 4, |V(P)| = 1. Let z be a cut vertex of G. Then G
can be expressed as G = Gy U Gy, where V(G1) N V(Gy) = {2z} and
V(G1) \ V(G3) and V(Gy) \ V(Gy) are both non-empty.

If v and P are in the same one of (G; and (G5, then we colour the
one containing them by minimality or by Theorem 3.2.8, then colour the
other side by Theorem 3.2.6 or Theorem 4.3.1. Therefore we may assume
without loss of generality that u € V(G2) \ V(G1) and the unique vertex
of Pisin V(Gy) \ V(Ga).

Now consider the canvas (Gy, S, L), where S; = P + z, the graph
obtained from P by adding z as an isolated vertex. There exists an L-
colouring ¢ of G either by Theorem 4.3.1 or Theorem 3.2.6. Let L; be
the list assignment of G such that L;(v) = L(v) for every v € V(G1)\{z}
and Li(z) = L(2) \ {p1(2)}. Since |V(G1)| < |[V(G)|, there exists an L;-
colouring ¢y of G1. Note that ¢1(z) # pa(2).

Let Ly be the list assignment of Go such that Lo(z) = {¢1(2), p2(2)}
and Lo(v) = L(v) for all v € V(G2)\{z}. Consider the canvas (G2, Sa, L2),
where 55 consists of the isolated vertices z and u. Since |V (Gs)| < |V(G)|,
there exists an Lo-colouring ¢ of Gy. Letting i be such that ¢;(z) = ¢(z),

w U p; is an L-colouring of GG, a contradiction. n

Claim 4.3.4 shows G is 2-connected and, therefore, every face of G is

bounded by a cycle. In particular, C'is a cycle.. Let v; and vy be the two
neighbours of the end-vertices of P in V(C) \ V(P).

Claim 4.4.4. There is no chord of C'" with an end in P.

Proof. Suppose for a contradiction that there is a chord with an end in P.
By assumption (d) — iv. in the statement of the theorem, both P and u
are on the same side of the chord. Colour the side of the chord containing
P and u first by minimality or by Theorem 3.2.8 depending on whether
or not x is on the same side, then colour the other side by Theorem 4.3.1
(which is colourable since it contains no wheel subcanvas with centre x)
or by Theorem 3.2.6. O]
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Claim 4.4.5. There is no chord of C' that has P and u on the same side.

Proof. If such a chord exists, colour the side containing P and u by mini-

mality, then extend the colouring to the other side by Theorem 3.2.6. [
Claim 4.4.6. U1 7é V2.

Proof. Suppose for a contradiction that v; = ve. Then vy = ve =u. If C
is an odd cycle, then either L(u) = Ly and we are done or L(u)\ Lo # 0.
Thus, we may assume L(u) \ Ly # ) and C' has an L-colouring. Thus,
whether C'is odd or even, either we are done or C' has an L-colouring ¢.

Let G’ := G\ V(P) and let L' be the list assignment of G’ such that,
L(u) = {p(u)}, and for every v in V(G') \ {u}, L'(v) is obtained from
L(v) by deleting the colours ¢ gives to its neighbours in P.

Since z is not adjacent to two vertices at an odd distance in P, and
since at most two colours are used in colouring P, |L'(v)| > 3 for every
vertex v different from u on the outer walk of G'. Therefore, G’ has an L'-
colouring ¢" by Theorem 4.3.1 or Theorem 3.2.6 such that ¢'(u) = ¢(u),

and thus G has an L-colouring, a contradiction. O
Claim 4.4.7. Fori € {1,2}, Ly C L(v;) and |L(v;)| = 3.

Proof. By symmetry, it suffices to prove the claim for + = 1. Suppose for
a contradiction that |L(vy) \ Lo| > 2.

Case 1. |V(P)| > 3 or x is adjacent to a vertex in P.

In this case, there is a colour ¢ in Ly such that |L(vy) \ {c}| > 3.
Colour the neighbour of vy in P by this colour, and then extend the
colouring to P. Let L' be the list assignment of G — P such that, for
every v € V(G — P), L'(v) is obtained from L(v) by deleting the colours
of the neighbours of v in P.

If x is adjacent to a vertex in P, then by hypothesis (d)-ii and Theo-
rem 3.2.8, G — P is L’-colourable. If z is not adjacent to a vertex in P,
and if |V(P)| > 3, then x is not the centre of any wheel (even if not a
subcanvas of G) by hypothesis (¢). Thus, z is not the centre of a wheel
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Figure 4.23: x is the centre of a wheel subcanvas of G — P that is not a
subcanvas of G.

subcanvas in G — P. Therefore, G — P is L'-colourable by minimality.
Case 2. |V(P)| <2 and x is not adjacent to P.

In this case, if x is not the centre of a wheel subcanvas of G — P, then
G is colourable. Thus, we assume that z is the centre of a wheel W that
is a subcanvas of G — P (but not a subcanvas of G). See Figure 4.23 for
examples.

Note that even though, due to hypothesis (d)-ii, we cannot assume
that the interior of G is triangulated, we may assume that the neighbours
of the vertices of P form a path (). Let y; and ys be the two vertices in
W N Q closest to v; and vy respectively, with distance measured in Q).

Since this is a minimum counterexample, there are no separating 4-
cycles with interior consisting of 5-lists only. Therefore, there are at most
three vertices in OW N Q. Again since this is a minimum counterexample,
there is no triangle with centre x. Thus, OW contains vertices from C.

Let 2z; and zy be the vertices of P adjacent to v, and vy respectively,
and let w; and wq be respectively the neighbours of y; and ys in V(C) N
V(OW). For i € {1,2}, let H; be the subgraph bounded by the v;w;-path
in OG not containing P, w;y;, and y;Qu;.

Let N(P) denote the set of vertices that have a neighbour in P. Let
L' be the list assignment of G — P such that, for every v € (V(G — P) \
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{vi,v}) " N(P), L'(v) = L(v) \ Lo, and otherwise L'(v) = L(v). Note
that, whether u = v; for some i € {1, 2} or not, there is an L’-confederacy
Cuw for uw, where w is any neighbour of u in V(9G) \ V(P).

For ¢ € {1,2}, if w is in H;, then by Corollary 3.3.12, C,u,

O . (ysw;, Cuyy) contains an L'-confederacy. For i € {1,2}, let t; be the
neighbour of v; in V(9G) \ V(P), and let C,;, be an L’-confederacy
for vit;. For i € {1,2}, if w is not in H;, then by Corollary 3.3.12,
Cyow: = P, (yiwi, Cyyy;) contains an L'-confederacy.

Since we assumed |L(vy) \ Lo| > 2, we can choose C,,;, such that the
colours of v; are not in Ly. Since a confederacy contains at least three
colourings, for ¢ € {1,2}, we can choose colourings for y;w; from C,,,, or
Crrows>

extendable to W.

In case y; and ¥y, are adjacent, we can find such colourings for y;w,

depending on whether u is in H; or not, such that together they are

and yows by Lemma 4.2.6. The other two possibilities for y; and y, are,
the case when y; = ¥, and the case when there is exactly one vertex
between y; and yo on IW NQ (recall that IW NQ contains at most three
vertices). In those two cases, we can prove lemmas similar to Lemma
4.2.6 about the existence of appropriate colourings for y;w; and ysws.

There are two broken wheels in W with principal paths y;xy, and
wirws. The one with principal path g2y, is bounded by a 4-cycle or
a triangle since there are at most three vertices in V(W) NV (Q). We
extend the colourings of y;w; and yows to x first and then to the broken
wheels; so the colourings should also be chosen such that x still has an
available colour.

Now for i € {1,2}, we extend the colouring of y;w; to H;, and then

colour P starting with zs. ]

Claim 4.4.8. For i € {1,2}, if v; # u, then either v; is the end of a
chord of C' that separates P from u, or x is adjacent to v; and a vertex
n P.

Proof. By symmetry it suffices to prove the claim for v;. Suppose that
v; # u and that it is not the end of a chord that separates u from P.
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Let P’ be the path obtained from P by adding vy, let S’ = P’ +u, and
let L' be the list assignment of G defined by L'(v1) = Lo and L'(v) = L(v)
for allv € V(G)\{v1}. Consider the canvas (G, S’, L'). This canvas is not
colourable since (G, S, L) is not. As (G, S, L) was chosen so that |V (P)]
is maximized, if (G, S’, L') satisfies the hypotheses of the theorem, then
GV (5")] is an odd cycle and L(u) = Ly.

Since by Claim 4.3.3 there is no chord of C' with an end in P, w is not
adjacent to an internal vertex of P’. From this, and since we assumed v,
is not the end of a chord that separates a vertex of P’ from u, then either
P’ and z do not satisfy (d)-ii, or G[V(S”)] is an odd cycle and L(u) = L.

If P and x do not satisfy (d)-ii, then, since P and x satisfy (d)-ii, «
is adjacent to v; and a vertex in P. Thus, suppose that G[V(5)] is an
odd cycle and L(u) = Ly. Then, since by Claim 4.4.4 there is no chord
with an end in P, u = v,.

By Claim 4.4.5, there is no chord that has P and u on the same side.
Thus, u is adjacent to v in C. That is, V(C) = V(P) U {vy, v2}.

Colour v; by the unique colour in L(v;)\ Lo, then extend the colouring

to C' — vy using Ly. Now we have the following two cases.

Case 1. |V(P)| is either 1 or 2.

In this case, C is a triangle or a 4-cycle. Then G colourable unless C'
is a 4-cycle and C' + z is a wheel. Since G contains no wheel subcanvas

with centre x, GG is colourable.

Case 2. |V(P)| > 2.

In this case, delete from the lists of the vertices in the interior of C'
the colours of their neighbours in P. Then, the subgraph G’ consisting
of the union of the interior of C' and v;v, now has v;vs coloured and has
its other outer boundary vertices having lists of size at least three. Since
|[V(P)| > 2, G does not contain any wheel with centre z. Thus, G’ does

not contain a wheel subcanvas with centre x, and so it is colourable by
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Theorem 4.3.1 or Theorem 3.2.6. ]

Let @ be the path in C' obtained by adding v; and vy to P.

Claim 4.4.9. If w; and wy are two consecutive neighbours of x in Q) such

that {wq,wa} # {v1,ve}, then the interior of the cycle xwQuyx is empty.

Proof. Let w; and w, be two vertices as in the statement of the claim.
Suppose for a contradiction that the interior of xw;Qwsx is not empty.
We may assume without loss of generality that wy & {v, v2}.

Colour zw;Quwyx with its exterior by induction. Let G’ be the sub-
graph x, wy, and the vertices in the interior of xwiQuwsx. Let L' be the list
assignment of G’ such that for every v € V(G) \ V(G’), L'(v) is obtained
from L(v) by deleting the colours of the neighbours of v in G — V(G').

There is a precoloured path of length one in 0G’, namely xw;, and
since we ¢ {v1,v2}, every vertex in G’ not in this path has a list of size
at least three. Thus, G’ is colourable by Thomassen’s Theorem 3.2.6.

O

Claim 4.4.10. If {vy, v} N{u} = 0, then at least one of v1 and vy is the

end of a chord separating P from wu.

Proof. Suppose for a contradiction that v; and vy are both different from
u and none of them is the end of a chord separating P from u. By Claim
4.4.8, for i € {1,2}, = is adjacent to v; and a vertex in P at an odd
distance from v; in ). From this, and hypothesis (d) — ii, we have that
Q@ is of even length.

By Claim 4.4.9, and since x is adjacent to a vertex in P, the interior
of xv1Quox is empty of vertices. Thus, we try to colour G — P a colouring

@ such that:

o for i€ {1,2}, {¢(x), p(vi)} # Lo, and

e if p(v1) and @(ve) are both in Ly, then ¢(vy) = ¢(vy).
Then we extend ¢ to P.
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Since v, Quex is empty, this is equivalent to finding such a colouring
in case P consists of one vertex. Denote this vertex by z. Now we may
assume that the graph contains only two 2-lists, v and z.

Let uy (ug) be the neighbour of u that belongs to the path not con-
taining z between v; (v) and w in C. We prove that at least one of vy,
Vg, U1, and us is the end of a chord that separates u and z.

Since {vy,v2} N {u} = O by hypothesis, {us,us} N{z} = 0. Suppose
for a contradiction that no one of vy, ve, u1, and us is the end of a chord
that separates v and z. Then, by symmetry, z is adjacent to u;, u, and
Us.

For i € {1,2}, let @; be the path between w; and v; in C' — {u, z}.
Since GG does not contain a wheel subcanvas with centre x, the subgraphs
bounded by zv;Q uiz and xv.Qsusx are not both broken wheels.

We may assume without loss of generality that the subgraph bounded
by xv1Q uix is not a broken wheel. Then, there is at most one colouring
of vyzu; unextendable to it. Delete from L(z) the colour involved in that
colouring. Now, the subgraph bounded by xv;zv.Qusuu;x is colourable
by induction and its colouring is extendable to GG, a contradiction.

Thus, at least one of vy, vy, w1, and uy is the end of a chord that
separates u and z. If u; or uy is the end of such a chord, and v; and vy
are not, then we exchange the names of u; and vy, us and v, and u and
z in case P = z.

If P # z, then we can pick one neighbour z of x in P, delete the rest
of P and add the edges zvy, zvy. This is a smaller instance and so is

colourable. This colouring extends to a colouring of G. O]

Claim 4.4.11. Fori € {1,2}, if v; # u, then v; is the end of a chord of
C' that separates P from wu.

Proof. By symmetry, it suffices to prove the claim for ¢ = 1. Suppose
for a contradiction that v; # u, and vy is not the end of a chord that
separates P from u. By Claim 4.4.8, x is adjacent to v; and a vertex in

P at an odd distance from v; in Q.
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By Claim 4.4.10, we have the following two cases.
Case 1. vy is the end of a chord separating P from u.

This text, the proof of Case 1, was prepared by Bruce Richter, follow-
ing our discussions on how to resolve this case. We thank Luke Postle for
his suggestions.

We apply Theorem 3.3.11. In this instance, our application requires

knowledge of an harmonica.

Definition. Let T = (G,P U P',L) be a canvas such that P and P’
are distinct paths of length one and let C be a government for P. Then T

is an harmonica from P to P" with government C if one of:

1. C is a dictatorship, G = P U P’, and the dictator of C is the vertex
of PNP';

2. C s a dictatorship with dictator z having colour c, there is another
path P" of length one and T contains an harmonica H from P" to
P, T = HUP, z is adjacent to both ends u,v of P", ¢ € L(u) =
L(v), |L(u)| = 3, and the government C" is the democracy using

L(u) \{c};

3. C is a democracy {(a,b), (b,a)}, there is a vertex z adjacent to both
ends u,v of P, L(z) = {a,b,c} and, G — u is an harmonica from
the path zv to P with the dictatorship {(c,a),(c,b)} having z as

dictator.

It is routine to see that if 7' is an harmonica, then, from P to P/,
there is a sequence Cy = C, Cy, ..., C, of governments that alternate
between dictatorships and democracies. These correspond precisely to
the alternation between adding the two vertices of a democracy to a

dictator in (2) and the dictator to the democracy in (3).

Turning now to the proof of Case 1, let u’ be any boundary neighbour

of u and C_; be any confederacy of possible colourings of v and u’; P_; is
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the path (u,u’). Applying Theorem 3.3.11, there is a confederacy Cy at
the path Py = (vy,w) such that any colouring of Py with a colouring in
Co L-colours the portion of G on the side of Py that contains P_; so that
P_4 is coloured with a colouring from C_;.

If the confederacy Cy can be chosen so that, for some colour ¢ € Ly,
no colouring in Cy colours v, with ¢, then we proceed as follows. Colour P
starting with ¢ on the neighbour of v5. Delete P and remove the colours
of their P neighbours from all the lists of the neighbours of P, other than
v1. Notice that we have deleted at most one colour from L(z), so x has
at least three colours. We retain the original L(v;) (even though one of
its colours appears on its P-neighbour).

Theorem 3.3.11 again implies (v, z) has a confederacy C, such that
each of its colourings extends to an L-colouring of the other portion of
G created by cleaving on vow, with the colouring of vyw coming from Cy.
Since at least one of the colourings in C, colours v; so that its colour is
different from the colour of its P-neighbour, we are done in this case.

In the remaining case, some colouring in Cy uses the colour of the P-
neighbour of v;. By a small case-checking, it is easy to see that there is
a government (G contained in the set of colourings involved in Cy and a
colour ¢ € Ly such that no colouring in Gy colours v, with ¢. Again colour
P by starting with ¢ on the P-neighbour of vy, delete P, and, except from
L(vy) delete the colours of the P-neighbours of all the vertices.

Applying Theorem 3.3.11 again, either we get a confederacy at (vq,x)
or we get an harmonica. In the case of the confederacy, we finish as in
the case there was a colour ¢ € Ly such that no colouring in Cy coloured
vy with ¢. Thus, we may assume that there is an harmonica H from
Py = (vg,w) to (x,v1) with government Gy (that does not colour vy with
¢). See Figure 4.24.

Notice that Ly C L(vy) but the colour of the P-neighbours of x is
now not in L(x). Therefore, L(v;) # L(x), so the government at the
(z,v1) end of H is not a democracy. It follows that this government is a

dictatorship.

Let Gy, Gy, ..., Gy be the sequence of governments obtained in the
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Figure 4.24: The dashed edges are in a harmonica from wvy to vyz.

harmonica H. For each G; that is a dictatorship, let z; be the dictator
and let ¢; be the colour of z; in GG;. For each G; that is a democracy, let
{w;,y;} be the vertices of G; and let L; be the set of two colours used in
G;. The following claim will be helpful for the remainder of the proof.

Let J be the subgraph of G obtained from the portion of G cleaved
by vaw that contains zv; by deleting V' (P).

Claim. For each © such that G; is a democracy, one of w;,y; is in the
boundary walk of J from w to vy that does not include either vy or x. The
other of w;,y; is in the boundary walk of J from vy to x that does not

include either v; or w.

Proof. If : = 0, then the result is trivial. Otherwise, the government Gy,
at x,v; is a dictatorship, so ¢ < k. Thus, there is a dictator z;,; joined
to w; and y;. Planarity shows that w;,y; are in the different boundary
walks. Il

We choose the labelling so that w; is on the wv;-subpath of the bound-
ary of J and y; is on the vox-subpath. Note that each y; has a list of size
3, so every y; is adjacent to vertices of P having different colours. In
particular, L(y;) N Ly = .
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Note that being an harmonica implies, for all ¢ such that G; is a
democracy, |L(z;+1) N L(y;)| > 2. Since L(y;) N Ly = &, we see that
|L(zi41) N Lo| < 1. Since |L(v1) N Lo| = 2, we conclude that v; is not a
dictator. It follows that x is the dictator z; of Gj.

We now show that we can finish the L-colouring of G. We know that
x is joined to the democracy wg_1,yx_1. The colour of x is ¢;. We can
colour v; with a colour in L(v;) that is neither ¢ nor the colour of the
P-neighbour of v;.

Letting P denote the boundary walk in J from wj._; to vy, we consider
the problem of colouring the portion J;, of J bounded by P,U(vq, x, wy_1).
Suppose first that J, does not contain a broken wheel centred at x. Colour
wy_1 with a colour different from c¢; and, if it is adjacent to vy, the colour
of v;. Now apply Theorem 3.2.4 to colour Jj.

In the other case, x is the centre of a broken wheel, so = is adjacent
to all the vertices of Py (there are no chords of ). Since there are no
separating 3-cycles, J is this broken wheel. We colour Py starting from
the v; end. Since w_; has the two colours in L,_; different from ¢, it
can be coloured from Lj;_;. This forces the colour of y,_; to the other
colour in Lj_;.

For the next iteration, there is a dictator z;_o adjacent to both wy_
and yr_1. We colour z;_o with c;_s. Let Py_5 be the boundary walk in
J — zx_s joining either w;_3 to w;_1 or y;_3 to y;_;. (This is the general
situation; we will discuss the possibility that z;_o € {w,vs} at the end.)

Then Py, together with the edges from its ends to z;_s bounds a re-
gion Ji_o, which can be coloured exactly as we did Ji above. Continuing
in this way (there is an obvious induction that is left to the reader), we
come to the remaining possibility that zy € {w, vo}. But exactly the same
argument applies. The vertex in {w,va} \ {20} has two different colours
in its dictatorship, so that the corresponding region Jy can be coloured

in the same way as the earlier J;’s.

Case 2. v, = u.
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Figure 4.25: Case 2 in Claim 4.4.11.

Subcase 2.1. L(u) = Ly.

In this case, extend the path P to include the vertex u. Since P was
chosen of maximum length, x is adjacent to v and a vertex in P at an
odd distance from u. Since zx is adjacent to v; and a vertex at an odd
distance from vy, again the path @ (the extension of P to include v; and
u) is of even length.

If P consists of one vertex, then the side G’ of vizu not containing P
is not a broken wheel since G is not a wheel with centre z. In case P has
more than one vertex, G’ may be a broken wheel.

If G’ is not a broken wheel, then we colour u and v; the same colour
from Ly, colour x by a colour not in Ly and different from the unique
colour involved in the colouring of vyzu unextendable to G’. Such a
colouring is extendable to P and G’, that is to G.

Let a and b be the colours of Ly. Then, the bad colourings of vyxu for
G’ are either {aca, ada} for some two colours ¢ and d, or {aba, aca, bab, bcb,
cac, cbe} for some colour ¢. In both cases, there is a colouring of v zu that
gives v; and u the same colour from Lg yet avoids all the bad colourings.

Such a colouring is extendable also to P, and so G is colourable.

Subcase 2.2. L(u) # Ly.
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Colour u by a colour not in Ly then delete u and delete this colour
from the lists of the neighbours of u. The neighbour of u in C' — P may
now have a list of size 2. The subgraph G — u is colourable unless it
contains a wheel subcanvas with centre z.

Let W be a wheel subcanvas with centre z. By hypothesis (¢) in
the statement of this Theorem, P contains at most two vertices. Let
P = p1py, where p; is adjacent to u. Since W is a subcanvas of G —u but
not of G, OW contains vertices that are neighbours of u in the interior
of C. It contains at most two such vertices since there are no separating
triangles. See Figure 4.25.

In case W contains one neighbour of u in the interior of C' we denote
it by ws, and in case they are two we let w; denote the one that has
neighbours in P, and let w, denote the other one. Suppose that C' =
up1pav1 21 - - - 2pu, and that the largest ¢ such that z; is in OW is k.

If the subgraph bounded by wwszy - - - z,u is a broken wheel, then the
subgraph bounded by wwipsvi2zy - - - 2z,u in case u has two neighbours in
the interior of C', and G in case u has one such neighbour, are double-
centred wheels.

In case the subgraph uwipsvi2y - - - z,u is a double-centred wheel, we
give u a colour that avoids the unique colouring of uwsyps, given by Lemma
4.2.4, unextendable to this double-centred wheel. Then, p;, po, ws in this
order, and then extend the colouring to GG. See the left drawing of Figure
4.25.

In case G is a double-centred wheels, colour u a colour that avoids the
unique colouring of up;ps, given by Lemma 4.2.4, unextendable to G.

Thus, the subgraph bounded by uwszy - - - z,u is not a broken wheel.
In case u has one neighbour in the interior of C, we colour G as follows.
Colour py by a colour that avoids the unique colouring of pows unextend-
able to W given by Lemma 4.2.1. Then, colour py, u, and then of the two
colours remaining in L(w,), choose the one that avoids the unique colour-
ing of uwsyz, unextendable to the subgraph bounded by wwszy - - - z,u.
Now, extend this colouring to W, and then to the rest of G.

In case u has two neighbours in the interior of C, and the sub-
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graph bounded by wuwszy - - - z,u is not a broken wheel, the subgraph
bounded by uwizzy - - - z,u is not a generalized wheel with principal path
uwiz. Thus, any colouring of uw,x is extendable to subgraph bounded
by uwixzg - - - 2z u.

Since |L(x)| > 4, there is a colour in L(z) that avoids all the bad
colourings of vyxz for the broken wheel bounded by xpsvizy--- zpx.
Colour x with that colour, colour ps, p1, u, wy in this order, then ex-
tend the colouring to the subgraph bounded by uwixz - - - z,u, and then
to the broken wheel bounded by xpsvizy - - - zp2. O

Claim 4.4.12. vyvs s a chord of C.

Proof. By Claim 4.4.6, v; # vo. Thus, we may assume without loss of
generality that v; # u. By the previous claim, v; is the end of a chord
of C that separates v from P. This and Claim 4.4.4 imply that vy # u
as well. Again by the previous claim, v, is the end of a chord of C' which
separates u from P. By planarity and 2-connectedness of G, it follows
that vyvy is a chord of C. O

Claim 4.4.13. |V(P)| = 1.

Proof. Suppose for a contradiction that |V (P)| > 2 and let Gy and G3 be
the subgraphs such that G = G1UG,, V(G1) NV (Gy) = {vy, v}, V(P) C
V(G1) and u € V(Gs). Let y ¢ V(G) be a new vertex and construct a
new graph G’ with V(G’) = V(G2)U{y} and E(G") = E(Gs)U{yvy,yva}.
Let L(y) = Lg. Consider the canvas (G',S’, L), where S” consists of the
isolated vertices y and w. Since |V(P)| > 2, |V(G")| < |V(G)|. By
minimality of (G, .S, L), there exists an L-colouring ¢ of G’. Hence there
exists L-colouring ¢ of Gy, where {¢(v1), p(v2)} # Lo.

We extend ¢ to an L-colouring of PUG5. First colour P. If |V (P)| =
2, then G[V (P)U{vy,vq}] is a 4-cycle, and its interior is colourable since
there is no wheel subcanvas with centre z in G. If |V/(P)| > 2, let L'(v;) =
{¢(v1)} and L'(vy) = {p(v2)}, and for v € V(Gy) \ (V(P) U {vy,v9}) let
L'(v) be obtained from L(v) by deleting the colours of the neighbours
of v in P. Then G, \ V(P) is L'-colourable either by Theorem 4.3.1 or
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Theorem 3.2.6 (in case x is adjacent to P) since G does not contain any
wheel with centre = (as [V(P)| > 2). The union of the colourings of G,

and (G is a colouring of GG, a contradiction. m

Let z be such that V(P) = {z}.

Since vy and v, are adjacent, both u; and us are different from z (Recall
the definition of u; and us from the proof of Claim 4.4.10). Planarity and
2-connectedness of G imply that at least one of u; and us is not an end of
a chord that separates z from wu different from wujus. Therefore, we have
by symmetry from Claims 4.4.11 and 4.4.12 that u; and uy are adjacent.
We also have by symmetry and Claim 4.4.7 that |L(u1)| = [L(ug)| = 3
and L(u) is contained in both L(u;) and L(us).

Claim 4.4.14. L(v1) = L(ve) or L(uy) = L(us).

Proof. In the latter case we exchange the names of v; and u;, v, and us,
z and u, and Ly and L(u).

Suppose that L(vy) # L(ve) and L(uy) # L(ug). Since G is planar,
either vy is not an end of a chord of C separating vy from u, or vy is not
an end of a chord separating v; from u. Assume without loss of generality
that v is not in a chord of C separating vy from u. This implies that v
is not an end of a chord in C other than v;vs. Let v’ be the vertex in C
distinct from vy and z that is adjacent to v;.

Let ¢ € L(vy)\ Lo. Let G = G—{z,v1}, and L'(v) be either L(v)\{c},
if v is adjacent to vy, or L(v), otherwise. Note that |L'(ve)| > 3 as
L(vy) # L(vy) and Ly € L(vy) N L(vg). Let S” consist of the isolated

vertices v’ and wu.
Case 1. &' does not contain a wheel subcanvas with centre x.

In this case, G’ has an L’ colouring. If u # ¢/, this follows from the
minimality of G. If u = ¢/, this follows from Theorem 4.3.1 or Theorem

3.2.6. Since this L’-colouring of G’ can be extended to an L-colouring of

G, we have a contradiction.
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Figure 4.26: W is a wheel subcanvas of G—{z,v1}, G—{z,v2}, G—{u, u; },
and G — {u, us}.

Case 2. ' contains a wheel subcanvas W with centre x.

Since this subcanvas is not a subcanvas of G, it contains in its outer
boundary a vertex from the interior of C' that is a neighbour of v;. By
the definition of subcanvas, any vertex of OW not in C' is a neighbour of
vy1. Now, since there are no separating 4-cycles with interior consisting of
5-lists only, there are at most two vertices of W in the interior of C.

Again by planarity, either u; is not the end of a chord of C' separating
z from wuy, or usy is not the end of a chord separating z from wu;. Thus, by
symmetry with v; and ve, W is a wheel subcanvas of either G — {u, u; }
or G — {u,us}. Now, if there are two vertices of OW in the interior of
C, then both are adjacent to v; as well as to u; or us. Therefore, it is
exactly one vertex of W in the interior of C; call it w.

In case W is a subcanvas of G—{u, u1 }, G contains the path v;wuy, and
in case W is a subcanvas of G —{u, us}, G' contains the path v;wus (those
are not symmetric). By planarity, in both cases, none of the vertices vy,
V9, U1, and us is the end of a chord that separates z from u other than vyv,
and ujug. Therefore, W is a wheel subcanvas of G — {z, v}, G — {u, u; },
and G — {u,us} (See Figure 4.26).

For i € {1,2}, let H; be the subgraph bounded by wv;wu; and the
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v;u;-path in C' — z. Then W is either contained in H; or in Hy. Assume
without loss of generality that W is contained in H; and let y (y) be the
vertex in V(W) N V(C) that is closest to vy (u;) with distance measured
in C'— z. Let Hs (Hy) be the subgraph of H; bounded by vywy (ujwy’)
and the path in C'— z between vy (u1) and y (v/).

We colour G as follows. Let a be the unique colour in L(v;)\ Lo, and b
the unique colour in L(ug) \ L(u). There is a dictatorship C; for vyw such
that vy is the dictator and its colour in every colouring in C; is a, and
such that the colours given to w by the colourings in C; are all different
from b.

By Corollary 3.3.8, there is a government C, for yw such that evey
colouring of yw in C, is extendable to a colouring of H3 whose restriction
to vyw is in C;. Choose from Cy a colouring for yw different from the
unique bad colouring for W given by Lemma 4.2.1, and then extend that
colouring to both W and Hj.

Now y'w is coloured (since W is), extend its colouring to a colouring
of Hy by Theorem 3.2.6, and then colour us by b. The colour b of uy is
different from the colour of u; since it is not in L(u1) by the assumption
L(uy) # L(uz) and the fact that L(u) is contained in both L(u;) an L(us).
It is also different from the colour of w by our choice of the government
Ci.

Now extend the colouring of wus to a colouring of Hy by Theorem
3.2.6 (recall that L(vy) has three colours different from the colour of vy).
Finally, colour z and u (they are colourable since v; is coloured by a colour

not in Ly and uy is coloured by a colour not in L(u)). O

By symmetry between z,vi,ve and w,u,us, assume that L(v) =
L(UQ).

Claim 4.4.15. One of vy, v9 is the end of a chord of C' distinct from vivs

that separates u from z.

Proof. Suppose for a contradiction that there is no such chord. Let ¢ €
L(v1) \ Lo = L(vy) \ Lo, and let Ly be a set of size two such that ¢ €
L1 Q L(Ul). Let Ll(Ul) = Ll(UQ) = L1 and Ll(U) = L(U) for all v <

109



V(G) \ {z,v1,v2}. Let P" denote the path with vertex-set {vy,v2} and
consider the canvas (G — z, P’ + u, Ly). Note that G — z is 2-connected,
since G is 2-connected and since there are no vertices in the interior of
the triangle zv v92.

Since P’ has no internal vertex, and there is no chord with an end in
P’ which separates a vertex of P’ from u, and since G — z contains no
wheels subcanvas with centre z, and G is a counterexample, hypothesis

(d)-ii is not satisfied in G — z. That is, x is adjacent to vy and v,.
Case 1. L(uy) = L(us).

In this case, by symmetry, = is adjacent to u; and uy. At most one of
the subgraphs H; bounded by v;xu; and the v;u;-path in C'—z, i € {1,2},
is a broken wheel since G contains no wheel subcanvas with centre x.
Thus, for at least one of H;, i € {1,2}, it is at most one colouring of v;zu;

that is not extendable to it.

We choose the colours of v1, v9, u1, us, and x such that at least one of
vy and vy is not coloured from Ly, at least one of u; and us is not coloured

from L(u), and for i € {1,2}, the colouring of v;zu; is extendable to H;.
Case 2. L(u1) # L(us).

In this case, let d denote the unique colour in L(uy)\ L(u). Note that
d ¢ L(us) by assumption. Colour u; with d, and delete d from the lists
of the neighbours of u;. Then, G — {u;,u} contains two 2-lists, namely,
z and the neighbour of u; on C' different from u and uy. If G — {uy, u} is
not colourable by induction, then it contains a wheel subcanvas W with
centre x.

For W not to be a subcanvas of G, it has to contain in its outer
walk vertices that are neighbours of u; in the interior of C'. It cannot
contain more than two such vertices since there are no separating 4-cycles
with interior consisting of 5-lists. Similarly, G — {ug, u} contains a wheel

subcanvas with centre .
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Figure 4.27: G — {uy, us} contains a wheel subcanvas with centre x that
is not a subcanvas of G.

Thus, the unique vertex in the interior of C' that is in W is the
common neighbour of u; and us in the interior of C'. See Figure 4.27.
Let y be the common neighbour of u; and wy in the interior of C'. For

i € {1,2}, let z; be the common neighbour of x and y in the v;u;-path in
C—z.

The following text was prepared by Bruce Richter.

Let w; and wy be the boundary neighbours of v; and vs, respectively that
are adjacent to x. Recall that L(z) = {a, b} and L(vy) = L(ve) = {a, b, c}.

Lemma 1. Suppose there is an L-colouring ¢ of either:

1. for some i € {1,2}, v; and x such that ¢(v;) = ¢ and both |L(w;) \
{o(2), p(vi)}| = 2 and |L(vs—s) \ {$(x), d(vi)}| = 2; or

2. vy, vy, and x such that ¢ € {p(v1),d(v2)} and, for both i = 1,2,
|L(wi) \ {¢(2), d(vi) }| = 2.

Then there is an L-colouring of G.

Proof. Extend ¢ by colouring y to avoid ¢(z), L(uz)\ L(u;), and any

two colours in L(z3)\ ¢(x). Notice that there are still two colours available
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at uy, but possibly only one at z;. There are two colours available at all
the vertices from us to either wy or vy. Starting by colouring us with
L(uz) \ L(uq), we colour up to 2z, and on to either wy or ve. On the other
side, colour up and down from z; to either w; or v; going up, and down
to uy. |

It remains to show that there is a colouring ¢ satisfying one of the

hypotheses of the lemma.

Claim 1. If there is ani € {1,2} such that ¢ ¢ L(w;), then there is an L-
colouring ¢ of x,v; such that ¢p(v;) = ¢ and both |L(w;)\{o(z), p(vi)|}| > 2
and |L(vs—;) \ {¢(z), ¢(vi)[}] = 2.

Proof. Colour v; with ¢ and = with a colour in L(z) \ {a,b,c}. Since
¢ ¢ L(w), [L(wi) \ {¢(x), o(vi)[}| = 2. That ¢(z) ¢ {a,b,c}, o(x) ¢
L(vg—i), so |L(vs—i) \ {p(x), o(vi)[}] = 2. O

Claim 2. If L(z) \ (L(wy) U L(w9)) # @, then there is an L-colouring
¢ of x,v1, vy such that ¢ € {¢(v1), d(v2)} and, for both i = 1,2, |L(w;) \
{o(x), p(vi) }| = 2.

Proof. By Claim 1, we may assume ¢ € L(w;) N L(wsy). Set ¢(x)
to be in L(x) \ (L(wy) U L(ws)) (so ¢(z) # ¢), ¢(v1) = ¢, and ¢(v2) €
{a, b} \ {¢(z)}. O

Claim 3. If, for some i € {1,2}, L(z) \ (L(w;) U {a,b}) # @, then
there is an L-colouring ¢ of x and v; such that ¢(v;) = ¢ and that both
| L(wi) \ {o(x), o(vi)[}| = 2 and [L(vs—i) \ {¢(x), ¢(vi)|}] = 2.

Proof. Choose ¢(z) € L(z) \ (L(w;) U{a,b}). Colour v; with ¢. [
At this point:

1. Claim 2 shows we may assume L(z) C L(w;) U L(ws); and

2. Claim 3 shows we may assume, for i = 1,2, L(z) C L(w;) U {a, b}.
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Since |L(z)| > |L(wy)|, Item 2 shows either a or b is in L(x) \ L(w;);
we choose the labelling of a,b so that a € L(x) \ L(w;). Now Item 1 and
the fact that |L(x)| > |L(ws)| shows that b € L(z) \ L(wsy).

Set ¢(x) = a, ¢(v1) = ¢, and ¢(ve) = b to leave two choices for each
of w; and ws.

Here ends the text prepared by Bruce Richter. O

Now, suppose without loss of generality that vy is the end of a chord
of C' distinct from vyv9 that separates u from z. Choose such a chord vyy
such that y is closest to v; measured by the distance in C'—wv,. Let GGy and
G5 be the connected subgraphs of G such that V(G1) NV (Gs) = {ve,y},
GiNGy =G, z€ V(Gy) and u € V(Gy).

Select a colour ¢ as follows. If vy is adjacent to y, let ¢ € L(vy) \ Lo =
L(v2)\ Lo. Note that in this case V(Gy) = {z,v1, v, y} (since the interiors
of the triangles zvvyz and yvjvey are colourable as in Claim 4.3.3). If v;
is not adjacent to y, consider the canvas (Gy, P”, L), where P" = zuvqy.

Since GG does not contain a wheel subcanvas with centre x, and since
it is not a broken wheel (as y was chosen to be the closest neighbour of vy
to v; and we are assuming here it is not adjacent to v ), then by Lemmas
3.2.10, 4.2.4 and 4.2.5, there is at most one colouring of P” that does not
extend to GG1. If such a bad colouring of P” exists, let ¢ be the colour of
y in that colouring, otherwise let ¢ be arbitrary.

Consider the canvas (G, S', L), where S’ consists of the isolated ver-
tices y and w, L'(y) = L(y) \ {¢} and L'(v) = L(v) otherwise. As
|[V(G2)| < |V(G)|, there exists an L’-colouring of Gs. This colouring
is extendable to an L-colouring of GG by the choice of ¢, a contradiction.

m
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