2,310 research outputs found

    Neutrinos and dark energy constraints from future galaxy surveys and CMB lensing information

    Full text link
    We explore the possibility of obtaining better constraints from future astronomical data by means of the Fisher information matrix formalism. In particular, we consider how cosmic microwave background (CMB) lensing information can improve our parameter error estimation. We consider a massive neutrino scenario and a time-evolving dark energy equation of state in the Λ\LambdaCDM framework. We use Planck satellite experimental specifications together with the future galaxy survey Euclid in our forecast. We found improvements in almost all studied parameters considering Planck alone when CMB lensing information is used. In this case, the improvement with respect to the constraints found without using CMB lensing is of 93% around the fiducial value for the neutrino parameter. The improvement on one of the dark energy parameter reaches 4.4%. When Euclid information is included in the analysis, the improvements on the neutrino parameter constraint is of approximately 128% around its fiducial value. The addition of Euclid information provides smaller errors on the dark energy parameters as well. For Euclid alone, the FoM is a factor of ∼\sim 29 higher than that from Planck alone even considering CMB lensing. Finally, the consideration of a nearly perfect CMB experiment showed that CMB lensing cannot be neglected specially in more precise future CMB experiments since it provided in our case a 6 times better FoM in respect to the unlensed CMB analysis .Comment: Accepted for publication in PR

    Real-time Cosmology

    Full text link
    In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the effort made to forecast the power of upcoming experiments like CODEX, GAIA and PLANCK in providing these new observational tools.Comment: 44 pages, 23 figures. References added; revised text, tables and plots. Accepted for publication in Physics Report

    Direct steam generation solar systems with screw expanders and parabolic trough collectors: Energetic assessment at part-load operating conditions

    Get PDF
    This paper explains a numerical optimization of a novel screw expander-based solar thermal electricity plant to evaluate the energetic benefits in specific case studies. In the proposed solar electricity generation system, which is based on the steam Rankine cycle, water is used as working fluid and storage, parabolic trough collectors as a thermal source and screw expander as power machine. Such solar system offers major advantages over conventional power plants adopting steam turbines: low operating pressures, good exploitation of low temperature heat sources, acceptable efficiency in energy conversion with steam-liquid mixtures and reduced size. Since screw expanders can operate at off-design working conditions in several situations when installed in direct steam generation solar plants, the chief purpose of the present study is to develop a thermodynamic model to analyse the energy performance of the planned solar power system when off-design operating conditions befall. To assess maximum efficiency of the whole power plant at part-load operating conditions, numerical optimization is then performed in a specific range of fluctuating evaporation temperatures under fixed condensation pressures. Keywords: Steam screw expander, Solar thermal power efficiency, Direct steam generation, Part-load behavior, Polytropic expansion phas

    Effect of geocomposite reinforcement on the performance of thin asphalt pavements: accelerated pavement testing and laboratory analysis

    Get PDF
    Abstract The objective of this study is to assess the effect of geocomposite reinforcement on fatigue cracking, reflective cracking and permanent deformation accumulation of thin asphalt pavements. For this purpose, a full-scale trial section was constructed with different interfaces: unreinforced (reference) and reinforced with three types of geocomposites, formed by the combination of a bituminous membrane with a fabric or grid. The experimental program included accelerated pavement testing (APT) carried out by means of Fast Falling Weight Deflectometer (FastFWD) and laboratory tests (three point bending tests) on samples taken from the trial section. After APT, significant permanent deflections were observed, likely due to the plastic yielding of the unbound layers. Nevertheless, all the geocomposites improved the permanent deformation resistance as compared to the unreinforced pavement by reducing the vertical strain at the top of the subgrade. Moreover, the geocomposites increased the energy necessary for the crack propagation by three to eight times with respect to the unreinforced pavement. Overall, these findings indicate that the use of geocomposites can extend the service life of thin asphalt pavements in terms of both cracking and permanent deformation accumulation

    Combined use of volumetric expanders and Scheffler receivers to improve the efficiency of a novel direct steam solar power plant

    Get PDF
    This research proposes an innovative solar thermal plant able to generate mechanical power through an optimized system of heliostats with Scheffler-type solar receivers coupled with screw-type steam expanders. Scheffler receivers appear to perform better than parabolic trough collectors due to the high compactness of the focal receiver, which minimizes convective and radiative heat losses even at high vaporization temperatures. At the same time, steam screw expanders are volumetric machines that can be used to produce mechanical power with satisfactory efficiency also by admitting two-phase mixtures and with further advantages compared to steam turbines: low working fluid velocities, low operating pressures, and avoidance of overheating. This study establishes a mathematical model to assess the energetic advantages of the planned solar thermal power system by evaluating the solar-to-electricity efficiency for different off-design working conditions. For this purpose, a numerical model on the Scheffler receiver is initially investigated, thus assessing all the energy losses which affect the heat transfer phase. A thermodynamic model is then developed to evaluate the energy losses and performance of the screw expander under real working conditions. Finally, parametric optimization of the solar energy conversion is performed in a wide range of operating conditions by establishing thermodynamic formulations related to the whole solar electricity generation system. Water condensation pressure and vaporization temperature are so optimized with respect to global energy conversion efficiency which, under the best operating conditions achieved in this research, rises from 10.9% to 14.4% with increasing solar irradiation intensity. Hence, the combined use of screw expanders and Scheffler receivers for solar thermal power system application can be a promising technology with advantages over parabolic dish concentrators. Novelty statement: This research proposes an innovative direct steam solar power plant based on an SRC, with water utilized as both heat transfer and working fluid, equipped with Scheffler solar receivers as a thermal source and screw expanders as work-producing devices. Technical studies and energy assessments of this kind of SEGS at part-load operation do not exist in scientific literature; after reviewing the literature, it was determined that volumetric expanders have been rarely combined with Scheffler receivers for solar thermal power system application. In effect, combined use of screw expanders and Scheffler-type solar concentrator in a direct steam solar power system represents a completely new plant configuration; however, as a promising DSG solar system, at present numerical model of this new sort of SEGS is lacked in literature and the optimum operating conditions have yet to be defined. For this reason, the chief objective of this paper is to define a first parametric optimization of all thermodynamic variables involved to maximize global efficiency of the proposed solar thermal power generation system for ordinary working conditions

    JERRY: An Interactive Planning Tool for Space Robotics

    Get PDF
    JERRY is a modular system for the interactive design, planning, control and supervision of the operation of autonomous robot systems in space. In such a highly critical environment, JERRY can effectively support the robot operators in both ordinary and emergency situations and make their work easier, safer and faster. JERRY can also provide scientists with no specific competence in robotics with a higher-level support for the automated execution of complex robot activities, with limited contributions from specialized operators

    Design of a modular exhibition structure with additive manufacturing of eco-sustainable materials

    Get PDF
    In this paper the mechanical characteristics of an innovative bioplastic material, the HBP - HempBioPlastic filament, is investigated. HBP was recently patented by an Italian company Kanésis that focused its activity on nature-derived materials. The filaments are the upshot of an original process allowing to reuse the surplus of the agricultural supply chains and transform it into new sustainable materials. At first, the 3D printed HBP samples were tested in tensile tests according to the ASTM- D638 standard and monitored in term of deformations by the Digital Image Correlation techniques (DIC) in order to evaluate the stress-strain behavior of different HBP textures under loading. In addition, using the HBP and the results coming from the experimental campaign, the design of an exhibition pavilion was proposed. The pavilion was modelled starting from the geometric construction of the fullerene. The supporting modular structure is combined by HBP modular elements, that can be produced by 3D printing or moulding. Finally, in order to demonstrate the feasibility of the proposed pavilion, a linear finite element analysis is presented on the base of the experimentally determined mechanical properties of HBP elements, under the effects of wind and seismic environmental actions
    • …
    corecore