Provided by PUblication MAnagement

20

SPECIAL THEME: ROBOTICS

Metadata, citation and similar papers at core.ac.uk

JERRY: An Interactive Planning Tool for Space Robotics

by Amedeo Cesta, Enrico Giunchiglia, Paola Riccucci, Paolo Traverso

JERRY is a modular system for the interactive design,
planning, control and supervision of the operation of
autonomous robot systems in space. In such a highly
critical environment, JERRY can effectively support
the robot operators in both ordinary and emergency

JERRY has been developed in a
collaboration between the Mechanized
Reasoning Groups at both the University
of Genoa and the Institute for Scientific
and Technological Research (IRST),
Trento, together with the Institute of
Psychology, CNR, Rome, as part of an
ongoing and more ambitious project
funded by ASI, the Italian Space Agency.
In this application, JERRY provides its
functionality to different kinds of users
who have to design, control and monitor
a robot arm performing complex tasks,
such as the setting up of experiments in
a space workcell.

The system integrates different Artificial
Intelligence techniques into an interactive
environment to synthesize plans for the
robot to execute. The high level goal of
the system is to simplify the interaction
of users at various levels of expertise with
a rather complex robotic device.

JERRY has been designed to enable robot
operation in Interactive Autonomy, ie the
system can perform all of its tasks
autonomously (including recovery from
various non-nominal situations), but the
user is able to easily monitor and possibly
override autonomous operations, in a
collaborative fashion. Effectiveness is
guaranteed by a set of tightly integrated
specialized modules, each dedicated to a
specific task. Interactive autonomy is
attained through a user-centered
architecture, where the user asks for
services from the specialized modules.

The key Al feature of the project lies in
the definition of an experiment as a
planning problem, which is then processed
by the Planning and Execution modules.

The Planning Module requests a high-
level description of the task to be
performed by the robot and performs the
synthesis of an equivalent abstract plan

Domain
Definition

Plan
Exacufion

situations and make their work easier, safer and faster.
JERRY can also provide scientists with no specific
competence in robotics with a higher-level support for
the automated execution of complex robot activities,
with limited contributions from specialized operators.

Figure1: Jerry
Architecture.

System
Simulation

(in a user-oriented symbolic language),
ie a sequence of high-level actions for the
robotic system to execute.

The Execution Module transforms an
abstract plan (describing the given task
as a sequence of high-level actions) into
an executable plan, where high-level
actions are expressed in terms of the basic
actions the robot system can perform,
taking into account constraints related to
the geometry and physics of the robot
system and its operating domain. The
executable plan is then encoded into the
robot’s control language, thus generating
an executable code in system-specific
language. The resulting code can be
visually validated by submitting it to the
Software Simulator of the robotic system.

Prototype

At present, a complete prototype has been
developed that considers the SPIDER arm
developed by ASI as the target robotic
device. The system is able to synthesize
low level programs coded in PDL2, the
SPIDER command language.

From a software perspective, JERRY
features a client/server architecture as

shown in Figure 1. Each specialized
module (top) is made accessible remotely
(via TCP-IP) as a server. The User
Interaction Module (bottom) acts as a
client, connecting to the appropriate
server at each step of the experiment’s
lifecycle and requesting its processing
services.

Such an architecture results in a rather
‘lightweight’ Interaction Module, thus
enabling users to run the earlier stages of
development on computers of limited
resources, such as laptops; for a wider
portability, the module is written in Java.

Figure 2 shows JERRY as seen by the
user, through its Interaction Module. In
the main window (left), four viewports
show the resources of the specialized
servers: the planning problem
specification window (left); the plan in
execution (top-right); the PDL2 code
corresponding to the action being
executed (middle-right); and the visual
simulation of the plan coming from the
simulator (bottom-right). At any moment,
for better readability, users can move the
module on which their attention is focused
to the main viewport. At the bottom of

ERCIM News No. 42, July 2000


https://core.ac.uk/display/37835801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the main window, a Console Area shows
information on the status of
communications with the remote servers
and the data exchanged.

Flan
S rlar

JERRY

The HTML User Guide (right) appears in
a separate window. It can be also viewed
independently of the User Interaction
Module, through any HTML browser.

Plmn
Exaiuficd

Tmak
Spacficalicn

e IR
Mt .

mre

Le e el HE

E wivt Ll istba
Fian

[T T T PR

SPECIAL THEME: ROBOTICS

Future Developments

Although the project is still running, a
first working prototype is now available
for experimentation. The current scenario
concerns the SPIDER arm extracting a
tray from a shelf, fixing it to one of two
tables and then automatically performing
experiments moving objects contained in
the tray.

Further development will enhance the
capabilities of the planning problem
specification window. While the current
design is centered on the selection of text
parameters, the next release will enable
users to specify all the settings via direct
manipulation of graphical objects. Further
work will be aimed at making the whole
architecture completely domain-
independent, in order to obtain a powerful
tool for robot software development and
verification, starting from a high level
specification language.

Links
http://pst.ip.rm.cnr.it/projects/jerry.htm

Figure 2: Jerry user interface.

| Byete
\.H“

LB R

=1 WL L

Mobile Robots with Dual Dynamics

by Ansgar Bredenfeld, Herbert Jaeger and Thomas Christaller

PI contact:

Amedeo Cesta — IP-CNR
Fax: +39 06 824 737
E-mail: cesta@ip.rm.cnr.it

Speed and complexity of behaviors are key factors
for mobile robots acting in unpredictable, dynamic
environments. The Behavior Engineering (BE) team
of the GMD Institute for Autonomous intelligent

Systems (AiS) focuses on the combination of these

Our approach to robot programming is
based on a mathematical model for robot
behaviors which we developed. It
integrates central aspects of a behavior-
based approach, robust control, and a
dynamical systems representation of
actions and goals. Robot behaviors are
specified through ordinary differential
equations, forming a global dynamical
system made of behavior subsystems
which interact through specific coupling
and bifurcation-induction mechanisms.
Behaviors are organized in levels where
higher levels have a larger time scale than

ERCIM News No. 42, July 2000

lower levels. Since at the elementary level
the activation of behaviors (activation
dynamics) is separated from their actuator
control laws (target dynamics), we named
our approach ‘Dual Dynamics’. An
important feature of Dual Dynamics is
that it allows for robust and smooth
changes between different behavior
modes, which results in very reactive, fast
and natural motions of the robots.

Dual Dynamics Design Environment
The successful design of robot software
requires means to specify, implement and

two research issues. We use soccer playing robots
as demonstrator platform since they provide an ideal
benchmark environment for interdisciplinary research
on mobile robotics.

simulate as well as to run and debug the
robot software in real-time on physical
robots. It was a major challenge to make
the Dual Dynamics approach productive
in a state-of-the-art design flow. The
result of our work is the integrated Dual
Dynamics Design Environment. It allows
to design Dual Dynamics models on a
high level of abstraction and to synthesize
all code artifacts required to make Dual
Dynamics models operative in practice:
a documentation, a simulation model,
control programs for physical robots and
a parameter set for generic test and debug

21



