7 research outputs found

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program—H2TCP Task-40, IEA\u27s expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program - H2TCP Task-40, IEA's expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes

    Hydrogen storage in complex hydrides: Past activities and new trends

    Get PDF
    Intense literature and research efforts have focussed on the exploration of complex hydrides for energy storage applications over the past decades. A focus was dedicated to the determination of their thermodynamic and hydrogen storage properties, due to their high gravimetric and volumetric hydrogen storage capacities, but their application has been limited because of harsh working conditions for reversible hydrogen release and uptake. The present review aims at appraising the recent advances on different complex hydride systems, coming from the proficient collaborative activities in the past years from the research groups led by the experts of the Task 40 'Energy Storage and Conversion Based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency. An overview of materials design, synthesis, tailoring and modelling approaches, hydrogen release and uptake mechanisms and thermodynamic aspects are reviewed to define new trends and suggest new possible applications for these highly tuneable materials

    Synthesis, Structure and Mg<sup>2+</sup> Ionic Conductivity of Isopropylamine Magnesium Borohydride

    No full text
    The discovery of new inorganic magnesium electrolytes may act as a foundation for the rational design of novel types of solid-state batteries. Here we investigated a new type of organic-inorganic metal hydride, isopropylamine magnesium borohydride, Mg(BH4)2∙(CH3)2CHNH2, with hydrophobic domains in the solid state, which appear to promote fast Mg2+ ionic conductivity. A new synthetic strategy was designed by combination of solvent-based methods and mechanochemistry. The orthorhombic structure of Mg(BH4)2∙(CH3)2CHNH2 was solved ab initio by the Rietveld refinement of synchrotron X-ray powder diffraction data and density functional theory (DFT) structural optimization in space group I212121 (unit cell, a = 9.8019(1) Å, b = 12.1799(2) Å and c = 17.3386(2) Å). The DFT calculations reveal that the three-dimensional structure may be stabilized by weak dispersive interactions between apolar moieties and that these may be disordered. Nanoparticles and heat treatment (at T > 56 °C) produce a highly conductive composite, σ(Mg2+) = 2.86 × 10−7, and 2.85 × 10−5 S cm−1 at −10 and 40 °C, respectively, with a low activation energy, Ea = 0.65 eV. Nanoparticles stabilize the partially eutectic molten state and prevent recrystallization even at low temperatures and provide a high mechanical stability of the composite

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    International audienceThe development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program-H 2 TCP Task-40, IEA's expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes
    corecore