88 research outputs found

    NHERF1 acts as a molecular switch to program metastatic behavior and organotropism via its PDZ domains.

    Get PDF
    Metastatic cells are highly plastic for differential expression of tumor phenotype hallmarks and metastatic organotropism. The signaling proteins orchestrating the shift of one cell phenotype and organ pattern to another are little known. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a molecular pathway organizer, PDZ-domain protein that recruits membrane, cytoplasmic, and cytoskeletal signaling proteins into functional complexes. To gain insight into the role of NHERF1 in metastatic progression, we stably transfected a metastatic breast cell line, MDA-MB-231, with an empty vector, with wild-type NHERF1, or with NHERF1 mutated in either the PDZ1- or PDZ2-binding domains to block their binding activities. We observed that NHERF1 differentially regulates the expression of two phenotypic programs through its PDZ domains, and these programs form the mechanistic basis for metastatic organotropism. The PDZ2 domain promotes visceral metastases via increased invadopodia-dependent invasion and anchorage-independent growth, as well as by inhibition of apoptosis, whereas the PDZ1 domain promotes bone metastases by stimulating podosome nucleation, motility, neoangiogenesis, vasculogenic mimicry, and osteoclastogenesis in the absence of increased growth or invasion. Collectively, these findings identify NHERF1 as an important signaling nexus for coordinating cell structure with metastatic behavior and identifies the "mesenchymal-to-vasculogenic" phenotypic transition as an essential step in metastatic progression

    Urinary and sexual outcomes in long-term (5+ years) prostate cancer disease free survivors after radical prostatectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After long term disease free follow up (FUp) patients reconsider quality of life (QOL) outcomes. Aim of this study is assess QoL in prostate cancer patients who are disease-free at least 5 years after radical prostatectomy (RP).</p> <p>Methods</p> <p>367 patients treated with RP for clinically localized pCa, without biochemical failure (PSA ≤ 0.2 ng/mL) at the follow up ≥ 5 years were recruited.</p> <p>Urinary (UF) and Sexual Function (SF), Urinary (UB) and Sexual Bother (SB) were assessed by using UCLA-PCI questionnaire. UF, UB, SF and SB were analyzed according to: treatment timing <it>(age at time of RP, FUp duration, age at time of FUp)</it>, tumor characteristics <it>(preoperative PSA, TNM stage, pathological Gleason score)</it>, nerve sparing (NS) procedure, and hormonal treatment (HT).</p> <p>We calculated the differences between 93 NS-RP without HT (group A) and 274 non-NS-RP or NS-RP with HT (group B). We evaluated the correlation between function and bother in group A according to follow-up duration.</p> <p>Results</p> <p>Time since prostatectomy had a negative effect on SF and a positive effect SB (both p < 0.001). Elderly men at follow up experienced worse UF and SF (p = 0.02 and p < 0.001) and better SB (p < 0.001).</p> <p>Higher stage PCa negatively affected UB, SF, and SB (all: p ≤ 0.05). NS was associated with better UB, SF and SB (all: p ≤ 0.05); conversely, HT was associated with worse UF, SF and SB (all: p ≤ 0.05).</p> <p>More than 8 years after prostatectomy SF of group A and B were similar. Group A subjects (NS-RP without HT) demonstrated worsening SF, but improved SB, suggesting dissociation of the correlation between SF and SB over time.</p> <p>Conclusion</p> <p>Older age at follow up and higher pathological stage were associated with worse QoL outcomes after RP. The direct correlation between UF and age at follow up, with no correlation between UF and age at time of RP suggests that other issues (i.e: vascular or neurogenic disorders), subsequent to RP, are determinant on urinary incontinence. After NS-RP without HT the correlation between SF and SB is maintained for 7 years, after which function and bother appear to have divergent trajectories.</p

    Functional Expression of the Extracellular Calcium Sensing Receptor (CaSR) in Equine Umbilical Cord Matrix Size-Sieved Stem Cells

    Get PDF
    The present study investigates the effects of high external calcium concentration ([Ca(2+)](o)) and the calcimimetic NPS R-467, a known calcium-sensing receptor (CaSR) agonist, on growth/proliferation of two equine size-sieved umbilical cord matrix mesenchymal stem cell (eUCM-MSC) lines. The involvement of CaSR on observed cell response was analyzed at both the mRNA and protein level.A large (>8 µm in diameter) and a small (<8 µm) cell line were cultured in medium containing: 1) low [Ca(2+)](o) (0.37 mM); 2) high [Ca(2+)](o) (2.87 mM); 3) NPS R-467 (3 µM) in presence of high [Ca(2+)](o) and 4) the CaSR antagonist NPS 2390 (10 µM for 30 min.) followed by incubation in presence of NPS R-467 in medium with high [Ca(2+)](o). Growth/proliferation rates were compared between groups. In large cells, the addition of NPS R-467 significantly increased cell growth whereas increasing [Ca(2+)](o) was not effective in this cell line. In small cells, both higher [Ca(2+)](o) and NPS R-467 increased cell growth. In both cell lines, preincubation with the CaSR antagonist NPS 2390 significantly inhibited the agonistic effect of NPS R-467. In both cell lines, increased [Ca(2+)](o) and/or NPS R-467 reduced doubling time values.Treatment with NPS R-467 down-regulated CaSR mRNA expression in both cell lines. In large cells, NPS R-467 reduced CaSR labeling in the cytosol and increased it at cortical level.In conclusion, calcium and the calcimimetic NPS R-467 reduce CaSR mRNA expression and stimulate cell growth/proliferation in eUCM-MSC. Their use as components of media for eUCM-MSC culture could be beneficial to obtain enough cells for down-stream purposes

    A Unique Carrier for Delivery of Therapeutic Compounds beyond the Blood-Brain Barrier

    Get PDF
    BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases
    • …
    corecore