572 research outputs found

    Autonomous, Collaborative, Unmanned Aerial Vehicles for Search and Rescue

    Get PDF
    Search and Rescue is a vitally important subject, and one which can be improved through the use of modern technology. This work presents a number of advances aimed towards the creation of a swarm of autonomous, collaborative, unmanned aerial vehicles for land-based search and rescue. The main advances are the development of a diffusion based search strategy for route planning, research into GPS (including the Durham Tracker Project and statistical research into altitude errors), and the creation of a relative positioning system (including discussion of the errors caused by fast-moving units). Overviews are also given of the current state of research into both UAVs and Search and Rescue

    Solar Decathlon Instrumentation and Controls

    Get PDF
    The Instrumentation and Controls team has designed a control and instrumentation system for the 2015 Cal Poly Solar Decathlon house that will monitor temperature, humidity, and energy usage throughout the house and control the phase change material duct. It will relay information to the user through a tablet application developed by the Computer Science team. The team has also designed a lighting control scheme for use with Lutron’s HomeWorks QS lighting control system

    Composable local memory organisation for streaming applications on embedded MPSoCs

    Get PDF
    Multi-Processor Systems on a Chip (MPSoCs) are suitable platforms for the implementation of complex embedded applications. An MPSoC is composable if the functional and temporal behaviour of each application is independent of the absence or presence of other applications. Composability is required for application design and analysis in isolation, and integration with linear effort. In this paper we propose a composable organisation for the top level of a memory hierarchy. This organisation preserves the short (one cycle) access time desirable for a processor's frequent local accesses and enables the predictability demanded by real-time applications. We partition the local memory in two blocks, one private, for local tile data, and another shared for inter-tile data communication. To avoid application interference, we instantiate one such shared local memory block and an Remote Direct Memory Access (RDMA) for each application running on the processor. We implement this organisation on an MPSoC with two processors on an FPGA. On this platform we execute a composition of applications consisting of a JPEG decoder, and a synthetic application. Our experiments indicate that an application's timing is not affected by the behaviour of another application, thus composability is achieved. Moreover, the utilisation of the RDMA component leads to 45% performance increase on average for a number of workloads covering a large range of communication/computation ratios

    The temporal evolution of subduction initiation in the Samail ophiolite: high-precision U–Pb zircon petrochronology of the metamorphic sole

    Get PDF
    High-precision dating of the metamorphic sole of ophiolites can provide insight into the tectonic evolution of ophiolites and subduction zone processes. To understand subduction initiation beneath a young, well-preserved and well-characterized ophiolite, we performed coupled zircon laser-ablation inductively coupled mass spectrometry trace element analyses and high-precision isotope dilution-thermal ionization mass spectrometry U–Pb dating on 25 samples from the metamorphic sole of the Samail ophiolite (Oman-United Arab Emirates). Zircon grains from amphibolite- to granulite-facies (0.8–1.3 GPa, ~700–900°C), garnet- and clinopyroxene-bearing amphibolite samples (n = 18) show systematic trends of decreasing heavy rare earth element slope (HREE; Yb/Dy) with decreasing Yb concentration, reflecting progressive depletion of the HREE during prograde garnet growth. For half of the garnet-clinopyroxene amphibolite samples, Ti-in-zircon temperatures increase, and U–Pb dates young with decreasing HREE slope, consistent with coupled zircon and garnet growth during prograde metamorphism. In the remaining samples, there is no apparent variation in Ti-in-zircon temperature with decreasing HREE slope, and the combined U–Pb and geochemical data suggest zircon crystallization along either the prograde to peak or prograde to initial retrograde portions of the metamorphic P–T–t path. The new data bracket the timing of prograde garnet and zircon growth in the highest grade rocks of the metamorphic sole between 96.698 ± 0.094 and 95.161 ± 0.064 Ma, in contrast with previously published geochronology suggesting prograde metamorphism at ~104 Ma. Garnet-free amphibolites and leucocratic pods from lower grade (but still upper amphibolite facies) portions of the sole are uniformly HREE enriched (Yb/Dy > 5) and are ~0.5–1.3 Myr younger than the higher grade rocks from the same localities, constraining the temporal offset between the metamorphism and juxtaposition of the higher and lower grade units. Positive zircon εHf (+6.5 to +14.6) for all but one of the dated amphibolites are consistent with an oceanic basalt protolith for the sole. Our new data indicate that prograde sole metamorphism (96.7–95.2 Ma) immediately predated and overlapped growth of the overlying ophiolite crust (96.1–95.2 Ma). The ~600 ky offset between the onset of sole metamorphism in the northern portion of the ophiolite versus the start of ophiolite magmatism is an order of magnitude shorter than previously proposed (~8 Ma) and is consistent with either spontaneous subduction initiation or an abbreviated period of initial thrusting during induced subduction initiation. Taken together, the sole and ophiolite crust preserve a record of the first ~1.5 Myr of subduction. A gradient in the initiation of high-grade metamorphism from the northwest (96.7 Ma) to southeast (96.0–95.7 Ma) may record propagation of the nascent subduction zone and/or variations in subduction rate along the length of the ophiolite

    Comparison and imputation-aided integration of five commercial platforms for targeted DNA methylome analysis

    Get PDF
    Targeted bisulfite sequencing (TBS) has become the method of choice for the cost-effective, targeted analysis of the human methylome at base-pair resolution. In this study, we benchmarked five commercially available TBS platforms-three hybridization capture-based (Agilent, Roche and Illumina) and two reduced-representation-based (Diagenode and NuGen)-across 11 samples. Two samples were also compared with whole-genome DNA methylation sequencing with the Illumina and Oxford Nanopore platforms. We assessed workflow complexity, on/off-target performance, coverage, accuracy and reproducibility. Although all platforms produced robust and reproducible data, major differences in the number and identity of the CpG sites covered make it difficult to compare datasets generated on different platforms. To overcome this limitation, we applied imputation and show that it improves interoperability from an average of 10.35% (0.8 million) to 97% (7.6 million) common CpG sites. Our study provides guidance on which TBS platform to use for different methylome features and offers an imputation-based harmonization solution that allows comparative, integrative analysis

    Distinct Expression Patterns of CD69 in Mucosal and Systemic Lymphoid Tissues in Primary SIV Infection of Rhesus Macaques

    Get PDF
    Although the intestinal tract plays a major role in early human immunodeficiency virus (HIV) infection, the role of immune activation and viral replication in intestinal tissues is not completely understood. Further, increasing evidence suggests the early leukocyte activation antigen CD69 may be involved in the development or regulation of important T cell subsets, as well as a major regulatory molecule of immune responses. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we compared expression of CD69 on T cells from the intestine, spleen, lymph nodes, and blood of normal and SIV-infected macaques throughout infection. In uninfected macaques, the majority of intestinal lamina propria CD4+ T cells had a memory (CD95+) phenotype and co-expressed CD69, and essentially all intestinal CCR5+ cells co-expressed CD69. In contrast, systemic lymphoid tissues had far fewer CD69+ T cells, and many had a naïve phenotype. Further, marked, selective depletion of intestinal CD4+CD69+ T cells occurred in early SIV infection, and this depletion persisted throughout infection. Markedly increased levels of CD8+CD69+ T cells were detected after SIV infection in virtually all tissues, including the intestine. Further, confocal microscopy demonstrated selective, productive infection of CD3+CD69+ T cells in the intestine in early infection. Combined, these results indicate CD69+CD4+ T cells are a major early target for viral infection, and their rapid loss by direct infection may have profound effects on intestinal immune regulation in HIV infected patients

    The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis

    Get PDF
    BACKGROUND: The genetic diversity of crop species is the result of natural selection on the wild progenitor and human intervention by ancient and modern farmers and breeders. The genomes of modern cultivars, old cultivated landraces, ecotypes and wild relatives reflect the effects of these forces and provide insights into germplasm structural diversity, the geographical dimension to species diversity and the process of domestication of wild organisms. This issue is also of great practical importance for crop improvement because wild germplasm represents a rich potential source of useful under-exploited alleles or allele combinations. The aim of the present study was to analyse a major Pisum germplasm collection to gain a broad understanding of the diversity and evolution of Pisum and provide a new rational framework for designing germplasm core collections of the genus. RESULTS: 3020 Pisum germplasm samples from the John Innes Pisum germplasm collection were genotyped for 45 retrotransposon based insertion polymorphism (RBIP) markers by the Tagged Array Marker (TAM) method. The data set was stored in a purpose-built Germinate relational database and analysed by both principal coordinate analysis and a nested application of the Structure program which yielded substantially similar but complementary views of the diversity of the genus Pisum. Structure revealed three Groups (1-3) corresponding approximately to landrace, cultivar and wild Pisum respectively, which were resolved by nested Structure analysis into 14 Sub-Groups, many of which correlate with taxonomic sub-divisions of Pisum, domestication related phenotypic traits and/or restricted geographical locations. Genetic distances calculated between these Sub-Groups are broadly supported by principal coordinate analysis and these, together with the trait and geographical data, were used to infer a detailed model for the domestication of Pisum. CONCLUSIONS: These data provide a clear picture of the major distinct gene pools into which the genus Pisum is partitioned and their geographical distribution. The data strongly support the model of independent domestications for P. sativum ssp abyssinicum and P. sativum. The relationships between these two cultivated germplasms and the various sub-divisions of wild Pisum have been clarified and the most likely ancestral wild gene pools for domesticated P. sativum identified. Lastly, this study provides a framework for defining global Pisum germplasm which will be useful for designing core collections
    corecore