28 research outputs found
Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach
We study voltage driven translocation of a single stranded (ss) DNA through a
membrane channel. Our model, based on a master equation (ME) approach,
investigates the probability density function (pdf) of the translocation times,
and shows that it can be either double or mono-peaked, depending on the system
parameters. We show that the most probable translocation time is proportional
to the polymer length, and inversely proportional to the first or second power
of the voltage, depending on the initial conditions. The model recovers
experimental observations on hetro-polymers when using their properties inside
the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR
Оптимизация затрат машиностроительного производства путем повышения уровня его организации
Тез. докл. X Междунар. науч.-техн. конф. (науч. чтения, посвящ. П. О. Сухому), Гомель, 23-24 октября 2014 г
Dipolar response of an ellipsoidal particle with an anisotropic coating
In this paper we study the response of an ellipsoidal particle with a dielectrically anisotropic coating (the coating dielectric function being different parallel and perpendicular to the coating normal) placed in a constant external electric field. For the coating region we find that potential can be written in terms of solutions to a one-dimensional Heun's equation which is derived from the three-dimensional Gauss equation for the potential in ellipsoidal coordinates. We give solutions to Heun's equation in three forms: for the general case we obtain solutions in terms of a series expansion. For the case of spheroidal particles we write the solutions using hypergeometric functions. For large coating anisotropy we derive a simple form of the solution for the potential. The inside of the ellipsoid and the surroundings are assumed dielectrically isotropic and the potential is therefore given by standard results. By matching the solutions across the boundaries we obtain the ellipsoidal particle polarizability, which is written in terms of the standard depolarization factors and logarithmic derivatives of the Heun's equation solutions. The results above also allow us to obtain the magnetic polarizability of a coated ellipsoid in a constant external magnetic field
Binding dynamics of single-stranded DNA binding proteins to fluctuating bubbles in breathing DNA
We investigate the dynamics of a single local denaturation zone in a DNA molecule, a so-called DNA bubble, in the presence of single-stranded DNA binding proteins (SSBs). In particular, we develop a dynamical description of the process in terms of a two-dimensional master equation for the time evolution of the probability distribution of having a bubble of size m with n bound SSBs, for the case when m and n are the slowest variables in the system. We derive explicit expressions for the equilibrium statistical weights for a given m and n, which depend on the statistical weight u associated with breaking a base-pair interaction, the loop closure exponent c, the cooperativity parameter σ0, the SSB size λ, and binding strength κ. These statistical weights determine, through the detailed balance condition, the transfer coefficient in the master equation. For the case of slow and fast binding dynamics the problem can be reduced to one-dimensional master equations. In the latter case, we perform explicitly the adiabatic elimination of the fast variable n. Furthermore, we find that for the case that the loop closure is neglected and the binding dynamics is vanishing (but with arbitrary σ0) the eigenvalues and the eigenvectors of the master equation can be obtained analytically, using an orthogonal polynomial approach. We solve the general case numerically (i.e., including SSB binding and the loop closure) as a function of statistical weight u, binding protein size λ, and binding strength κ, and compare to the fast and slow binding limits. In particular, we find that the presence of SSBs in general increases the relaxation time, compared to the case when no binding proteins are present. By tuning the parameters, we can drive the system from regular bubble fluctuation in the absence of SSBs to full denaturation, reflecting experimental and in vivo situations
Dynamic approach to DNA breathing
Even under physiological conditions, the DNA double-helix spontaneously denatures locally, opening up fluctuating, flexible, single-stranded zones called DNA-bubbles. We present a dynamical description of this DNA-bubble breathing in terms of a Fokker-Planck equation for the bubble size, based on the Poland-Scheraga free energy for DNA denaturation. From this description, we can obtain basic quantities such as the lifetime, an important measure for the description of the interaction of a breathing DNA molecule and selectively single-stranded DNA binding proteins. Our approach is consistent with recent single molecule measurements of bubble fluctuation. We also introduce a master equation approach to model DNA breathing, and discuss its differences from the continuous Fokker-Planck description
Observing Plasmonic-Molecular Resonance Coupling on Single Gold Nanorods
Strong plasmonic-molecular resonance coupling occurs between noble metal nanocrystals and organic adsorbates when the plasmonic resonance is degenerate with the molecular one. This interaction forms the basis for many fundamental studies and practical applications. We describe here the first direct measurement of the resonance coupling on single gold nanorods. The dark-field scattering technique is employed. The nanorods are embedded in hydrogel to facilitate uniform dye adsorption. The adsorbed dye molecules exhibit both monomer and H-aggregate absorption bands. The same gold nanorods are measured before and after the dye adsorption. Both strong and weak Coupling are investigated by selecting nanorods with different longitudinal plasmon bands. Excellent agreement between the experiments and an analytic theory is obtained. The resonance coupling reveals a unique three-band structure, The tunability of the coupling on individual nanorods is further demonstrated by photodecomposing the adsorbed dye molecules
Detailed characterization of plasmids carrying resistance genes using optical DNA mapping
We present an assay, based on optical DNA mapping in nanochannels that is capable of characterizing the plasmid content of bacterial isolates resistant to antibiotics in a fast an detailed way. In a single experiment we determine the number of different plasmids in each sample, their size, as well as a barcode that can be used for plasmid identification and tracing. In addition we demonstrate that we can identify resistance genes on individual plasmids using CRISPR/Cas9. We foresee that the assay can be a useful tool all the way from fundamental plasmid biology to diagnostics and surveillance of resistant infections
Bacteriophage strain typing by rapid single molecule analysis
Rapid characterization of unknown biological samples is under the focus of many current studies. Here we report a method for screening of biological samples by optical mapping of their DNA. We use a novel, one-step chemo-enzymatic reaction to covalently bind fluorophores to DNA at the four-base recognition sites of a DNA methyltransferase. Due to the diffraction limit of light, the dense distribution of labels results in a continuous fluorescent signal along the DNA. The amplitude modulations (AM) of the fluorescence intensity along the stretched DNA molecules exhibit a unique molecular fingerprint that can be used for identification. We show that this labelling scheme is highly informative, allowing accurate genotyping. We demonstrate the method by labelling the genomes of lambda and T7 bacteriophages, resulting in a consistent, unique AM profile for each genome. These profiles are also successfully used for identification of the phages from a background phage library. Our method may provide a facile route for screening and typing of various organisms and has potential applications in metagenomics studies of various ecosystems
Nanoconfined Circular DNA
Studies of nanoconfined circular DNA are of interest both from a biological as well as a fundamental polymer physics perspective. We here present the use of nanofluidic channels as a tool for comparing statics and dynamics of the linear and circular configuration of the same DNA molecule
Identifying bacteria using DNA binding maps
We have developed an assay, based on nanofluidic channels and fluorescence microscopy, for optical mapping of DNA based on competitive binding between two molecules - one fluorescent and one sequence selective. From the experimental data we can extract binding constants for the two competing DNA binders, which may be subsequently used to calculate a theoretical reference map of any DNA with known sequence. The goal is to create a method for fast identification of bacteria from single DNA molecules without the need for additional cultivation or amplification. We here demonstrate a proof-of-principle experiment on phage DNA and furthermore show that the method can be used to distinguish between two strains of E. coli DNA and to map pieces of DNA onto the full genome