7 research outputs found

    Quantum Gravity via Causal Dynamical Triangulations

    Full text link
    "Causal Dynamical Triangulations" (CDT) represent a lattice regularization of the sum over spacetime histories, providing us with a non-perturbative formulation of quantum gravity. The ultraviolet fixed points of the lattice theory can be used to define a continuum quantum field theory, potentially making contact with quantum gravity defined via asymptotic safety. We describe the formalism of CDT, its phase diagram, and the quantum geometries emerging from it. We also argue that the formalism should be able to describe a more general class of quantum-gravitational models of Horava-Lifshitz type.Comment: To appear in "Handbook of Spacetime", Springer Verlag. 31 page

    CDT---an Entropic Theory of Quantum Gravity

    Full text link
    In these lectures we describe how a theory of quantum gravity may be constructed in terms of a lattice formulation based on so-called causal dynamical triangulations (CDT). We discuss how the continuum limit can be obtained and how to define and measure diffeomorphism-invariant correlators. In four dimensions, which has our main interest, the lattice theory has an infrared limit which can be identified with de Sitter spacetime. We explain why this infrared property of the quantum spacetime is nontrivial and due to "entropic" effects encoded in the nonperturbative path integral measure. This makes the appearance of the de Sitter universe an example of true emergence of classicality from microscopic quantum laws. We also discuss nontrivial aspects of the UV behaviour, and show how to investigate quantum fluctuations around the emergent background geometry. Finally, we consider the connection to the asymptotic safety scenario, and derive from it a new, conjectured scaling relation in CDT quantum gravity.Comment: 49 pages, many figures. Lectures presented at the "School on Non-Perturbative Methods in Quantum Field Theory" and the "Workshop on Continuum and Lattice Approaches to Quantum Gravity", Sussex, September 15th-19th 2008 . To appear as a contribution to a Springer Lecture Notes in Physics boo

    Wilson loops in CDT quantum gravity

    Get PDF
    By explicit construction, we show that one can in a simple way introduce and measure gravitational holonomies and Wilson loops in lattice formulations of nonperturbative quantum gravity based on (Causal) Dynamical Triangulations. We use this set-up to investigate a class of Wilson line observables associated with the world line of a point particle coupled to quantum gravity, and deduce from their expectation values that the underlying holonomies cover the group manifold of SO(4) uniforml

    Renormalization Group Flow in CDT

    Get PDF
    We perform a first investigation of the coupling constant flow of the nonperturbative lattice model of four-dimensional quantum gravity given in terms of Causal Dynamical Triangulations (CDT). After explaining how standard concepts of lattice field theory can be adapted to the case of this background-independent theory, we define a notion of "lines of constant physics" in coupling constant space in terms of certain semiclassical properties of the dynamically generated quantum universe. Determining flow lines with the help of Monte Carlo simulations, we find that the second-order phase transition line present in this theory can be interpreted as a UV phase transition line if we allow for an anisotropic scaling of space and time.Comment: Typos corrected, 21 page

    Asymptotic Safety, Emergence and Minimal Length

    Full text link
    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that 1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and 2) there is a sense in which asymptotic safety implies a minimal length. In so doing we also discuss possible signatures of asymptotic safety in scattering experiments.Comment: LaTEX, 20 pages, 2 figures; v.2: minor changes, reflecting published versio
    corecore