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Abstract

We perform a first investigation of the coupling constant flow of the nonperturba-
tive lattice model of four-dimensional quantum gravity given in terms of Causal
Dynamical Triangulations (CDT). After explaining how standard concepts of lat-
tice field theory can be adapted to the case of this background-independent theory,
we define a notion of “lines of constant physics” in coupling constant space in
terms of certain semiclassical properties of the dynamically generated quantum
universe. Determining flow lines with the help of Monte Carlo simulations, we
find that the second-order phase transition line present in this theory can be in-
terpreted as a UV phase transition line if we allow for an anisotropic scaling of
space and time.
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1 Introduction

The formalism of Causal Dynamical Triangulations (CDT) provides a regulariza-
tion of the putative theory of quantum gravity [1, 2]. Its underlying assumption
is that the fundamental theory of quantum gravity can be understood purely
in terms of quantum field-theoretical concepts. CDT quantum gravity shares
this assumption with the asymptotic safety program, originally put forward by
Weinberg [3], which was subsequently studied in a (2 + ε)-dimensional expan-
sion [4] and more recently with the help of the functional renormalization group
equation [5]. Similarly, a key idea behind Hořava-Lifshitz gravity (HLG) [6] is
to use ordinary quantum field theory to construct quantum gravity, but to cir-
cumvent the usual problem of non-renormalizability by explicitly breaking the
four-dimensional diffeomorphism invariance of the continuum theory with the
introduction of a preferred time foliation. In this setting one can naturally in-
troduce terms with higher spatial derivatives in the action to render the theory
renormalizable while keeping the theory unitary.

Their common field-theoretic basis, as well as coinciding results on the spectral
dimension of spacetime on Planckian scales [7] and a similar phase structure of
CDT and HLG [8, 9] make it natural to try to relate the three approaches – causal
dynamical triangulations, asymptotic safety and Hořava-Lifshitz gravity – more
directly.1 Interesting examples of this include the formulation of a functional
renormalization group equation for foliated spacetimes [14] and its application to
projectable HLG at low energies [15], and an extension of CDT quantum gravity
by the explicit addition of higher spatial derivative terms (albeit at this stage
only in three spacetime dimensions [16]). Note that HLG does not appeal to an
asymptotic safety scenario for the theory to make sense at high energies.

Although the distinguished notion of proper time of CDT looks superficially
similar to the time foliation in HLG, its status is different because CDT does not
possess any residual diffeomorphism invariance, which therefore cannot be broken
either. The role of time in CDT was recently clarified further in a study in three
dimensions, where it was verified explicitly that key results of CDT quantum
gravity continue to hold in a version of the theory which does not possess preferred
simplicial hypermanifolds that can be identified with surfaces of constant time
[17]. This provides strong evidence that the notion of proper time that is naturally
available in standard CDT is simply a convenient parameter to (partially) describe
the spacetime geometry, and that its presence does not skew the results of the
theory in an unwanted way. Of course, also this “non-foliated” version of CDT
incorporates microscopic causality conditions, implying an asymmetry between

1More distant relatives of CDT are group field theory [10] and so-called tensor models [11],
which in specific limits can generate triangulations. These models are presumably more closely
related to (Euclidean) Dynamical Triangulations [12, 13] than to CDT.
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time and spatial directions that persists after Wick-rotating, just like in standard
CDT. It is therefore conceivable that in part of the coupling constant space [8] the
nonperturbative effective quantum action of CDT can be related to an anisotropic
action of HLG-type, even though in the former no higher-order spatial derivative
terms are added explicitly to the bare classical Einstein-Hilbert action. Let us
also point out that the built-in unitarity of the CDT formalism – resulting from
a well-defined transfer matrix [18] – is likely to affect the functional form of the
dynamically generated quantum action, in a way we currently do not control
explicitly.

In this article, we present a first attempt at establishing a concrete renor-
malization group flow in four-dimensional CDT quantum gravity (in the stan-
dard version and without higher-derivative terms in the bare action), assuming a
straightforward identification of lattice proper distances with continuum proper
distances. More specifically, with the help of computer simulations we determine
trajectories of constant physics – interpreted in a specific way in terms of semi-
classical observables we have at our disposal – in the coupling constant space
spanned by the bare coupling constants of the lattice theory. Moving along these
lines in the direction of smaller lattice spacing, we do not find evidence that
they run into the second-order phase transition line, with the possible exception
of the triple point of the phase diagram, where three transition lines meet. A
slightly more general ansatz that allows for a relative scaling of time and space
as the second-order transition is approached leads to a more interesting result,
which can be interpreted as a proper UV limit. – In terms of procedure and first
results, our investigation provides a reference frame and opens the door to a fur-
ther systematic study of renormalization group flows in CDT and perhaps other
nonperturbative lattice formulations of quantum gravity. This will involve more
sophisticated arguments for an appropriate relative scaling of time and space
near the phase transition, and hopefully a wider range of observables to provide
alternative definitions of what it means to “keep physics constant”.

2 Causal Dynamical Triangulations

CDT is a theory of fluctuating geometries, which at the regularized level are
represented by triangulated, piecewise flat spacetimes. It can be viewed as a
lattice theory in the sense that the length assignments to the one-dimensional
edges (links) of a given triangulation completely determine the piecewise flat
geometry.2 As already mentioned, a well-behaved causal structure is implemented
on each Lorentzian triangulation with the help of a global time foliation that is

2Let us emphasize that these geometries are perfectly continuous (and not discrete, as is
sometimes stated), despite the fact that curvature is distributed on them in a singular manner.
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distinguished in terms of the simplicial structure. One sums over these geometries
in the path integral, where the action is given by the Einstein-Hilbert action in
Regge form, suitable for piecewise linear geometries (see the review [1] or the
original articles [18] for further details). All triangulations can be obtained by
suitably gluing together two types of building blocks, the so-called (4,1) and
(3,2) four-simplices, leading (after Wick rotation) to a very simple form for the
Euclidean Regge action SE, namely,

SE = −(κ0 + 6∆)N0 + κ4(N
(4,1)
4 +N

(3,2)
4 ) + ∆(2N

(4,1)
4 +N

(3,2)
4 ), (1)

where N
(4,1)
4 and N

(3,2)
4 are the numbers of four-simplices of type (4,1) and (3,2)

respectively, and N0 is the number of vertices in the triangulation. The parameter
κ0 is proportional to a2/G0 where G0 is the bare gravitational coupling constant
and a denotes the length of (spatial) links. Similarly, κ4 is proportional to the
bare cosmological constant but will play no role here, since we will keep the
number of four-simplices (almost) constant during the Monte Carlo simulations
of the CDT lattice system.

The parameter ∆ appearing in the action (1) requires a more detailed dis-
cussion. There are two types of edges that occur in the Lorentzian-signature
triangulations before everything is Wick-rotated, spacelike links with squared
length a2 and timelike links with negative squared length a2t =−αa2, where the
parameter α > 0 quantifies the relative magnitude of the two. We then perform
a rotation to Euclidean signature by analytically continuing α in the lower-half
complex plane from α to −α = α̃, so that

a2t = −αa2 7→ a2t = α̃a2, α̃ > 0. (2)

The original, Lorentzian Einstein-Hilbert action in Regge form depends on α
and satisfies iSL(α) = −SE(−α) when rotating from Lorentzian to Euclidean
signature. The Euclidean action SE is now a function of α̃ (see [1] for details). It
can be parametrized in the form (1), where ∆ is now a function of α̃, normalized
such that the case of uniform edge lengths, α̃ = 1, corresponds to ∆ = 0.

At this stage ∆ is not a coupling constant, but only a parameter in the action.
Even for ∆ different from zero the action continues to be the Euclidean Regge-
Einstein-Hilbert action, merely reflecting the fact that some links are assigned
a different length. However, in the effective quantum action ∆ will appear as a
coupling constant. The reason why this can happen is that the choice of coupling
constants for which interesting fluctuating geometries are observed is far from the
semiclassical region. In this nonperturbative region the measure used in the path
integral becomes as important as the classical action, and ∆ will effectively play
the role of a coupling constant. We refer again to [1] for a detailed discussion,
and examples of nongravitational lattice models where one encounters a similar
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Figure 1: Phase diagram of CDT quantum gravity in four dimensions.

situation. In view of this, the coupling constant space of CDT quantum gravity
is spanned by κ0 and ∆.

For reference, we are showing in Fig. 1 the corresponding phase diagram,
already reported in [19, 9]. It has three phases, denoted by A, B and C. Previ-
ous studies have shown that only phase C is interesting from the point of view of
quantum gravity, in the sense that only there one seems to find quantum fluctuat-
ing geometries which are macroscopically four-dimensional. The properties of the
quantum geometry in this phase have been studied in great detail [20, 19, 21, 22].

In the present work, we will follow standard lattice procedure by trying to
trace the flow of the bare coupling constants inside phase C when we take the
lattice spacing a to zero, while keeping physics constant. We know from [9] that
the phase transition line separating phases B and C is of second order, while
phases A and C are separated by a first-order transition. Our expectation is
therefore that the flow lines will approach this second-order transition line when
a goes to zero and continuum physics is kept constant.

3 Identifying paths of constant physics

For the purpose of illustration, consider a φ4-lattice scalar field theory with bare
(dimensionless) mass term m0 and bare dimensionless φ4-coupling constant λ0.
Correspondingly, the effective action has a renormalized mass mR and a renor-
malized coupling constant λR. Let us assume that λR is defined according to
some specific prescription in terms of the four-point function. Similarly, assume
that mR is defined by some prescription related to the two-point function, for
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example the exponential fall-off of the connected two-point function3. One can
thus write mRa=1/ξ, where ξ is the correlation length measured in lattice units
a. This relation specifies how one should scale the lattice spacing a to zero as a
function of the correlation length ξ in order for mR to stay constant. Once the
actual value of mR has been supplied from the outside, say by comparison with
experiment, the value of a(ξ) is fixed in physical units by measuring ξ.

In order to define a continuum limit where a(ξ)→ 0 while mR is kept fixed one
needs a divergent correlation length ξ, in other words, a phase transition point
or phase transition line of second order in the (m0, λ0)-coupling constant space.
The lattice φ4-theory has such a second-order phase transition line. Choosing
specific initial values m0(0) and λ0(0) for the bare coupling constants, performing
the functional lattice integral will determine the renormalized coupling λR =
λR(m0(0), λ0(0)) corresponding to these values. The requirement that λR(m0, λ0)
stay constant when changing m0 and λ0 then defines a curve (m0(s), λ0(s)) in the
plane spanned by the bare coupling constants, where s is an arbitrary curve
parameter.

Along this curve the correlation length ξ will change. Assuming for simplicity
that ξ is a monotonic function of s, one can parametrize the curve by ξ instead.
Moving along the curve in the direction of increasing ξ will in general lead to the
second-order phase transition line where ξ becomes infinite. At the same time,
because of a(ξ) = 1/(mRξ), the UV cut-off a will decrease. If the curve reaches
the transition line at a point λ∗0, this point will be a UV fixed point for the φ4-
theory, corresponding to a renormalized mass mR and a renormalized coupling
constant λR, since approaching it one has a(ξ)→ 0. However, it can happen that
a curve of constant λR does not reach the second-order phase transition line. If
one cannot find a single curve of constant λR, for any starting point (m0, λ0),
which reaches such a critical point, one would conclude that the theory does not
have a UV completion with a finite value of the renormalized coupling constant
λR. For the four-dimensional scalar φ4-theory this turns out to be the case.

Assume for the sake of the argument that there is a UV fixed point λ∗0 some-
where on the second-order phase transition line4. The β-function then has a zero
there, β(λ∗0) = 0, since at fixed mR and λR the coupling λ0(ξ) stops running for
ξ → ∞. Approaching the fixed point along such a trajectory, the behaviour of

3As usual in a lattice set-up, there is the question of lattice artifacts when defining mR and
λR, due to the finiteness of the lattice spacing and accompanying discretization effects. In the
discussion below we ignore such technical issues because our focus will be on the essence of the
renormalization group flow of the bare lattice coupling constants.

4Note that in formulas (3) and (5) below it is assumed that λ∗0 6= 0. If λ∗0 = 0 the fixed point
is Gaussian and the formulas have to be modified appropriately.
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λ0 near λ∗0 is described by

λ0(ξ) = λ∗0 + const. ξβ
′
, β′ =

dβ

dλ0

∣∣∣
λ0=λ∗0

. (3)

In the CDT quantum gravity theory it will be convenient to analyze the flow
of bare coupling constants for fixed continuum physics under the additional as-
sumption that the physical volume of spacetime is fixed and finite. With this in
mind, one can reformulate the above coupling constant flow in ordinary lattice
field theory in terms of so-called finite-size scaling. Consider the case of d dimen-
sions and introduce a dimensionful physical d-volume Vd by Vd :=Nda

d, where Nd

is the total number of d-dimensional elementary building blocks (hypercubes on
a cubic lattice, simplices on a triangular lattice). We want to make sure that Vd
can be viewed as constant along a trajectory of the kind described above, with
mR and λR kept fixed, in the continuum limit as a(ξ)→ 0. This can be achieved

by keeping the ratio between the linear size L = N
1/d
d of the lattice “universe”

and the correlation length ξ fixed. In terms of the renormalized mass mR and
the lattice spacing a(ξ) the ratio can also be written as

ξd

Nd

=
1

(a(ξ)mR)dNd

=
1

md
RVd

. (4)

Accordingly, moving along a trajectory of constant mR and λR in the bare
(m0, λ0)-coupling constant plane and changing Nd ensures that the quantum field
theory in question has a finite continuum spacetime volume Vd. Furthermore,
the equality (4) implies that the dependence on the correlation length ξ in (3)
can be substituted by a dependence on the linear size N1/d in lattice units of the
spacetime, leading to

λ0(Nd) = λ∗0 + const. N
β′/d
d . (5)

We noted above that the absence of a UV fixed point is signaled by the fact
that no curve of constant λR reaches the phase transition line. In this case the
correlation length ξ along curves will not go to infinity and the lattice spacing
will not go to zero. Restated in terms of the discrete lattice volume it means that
Nd will not go to infinity.

We have outlined in this section in some detail how to define and follow
lines of constant physics in the φ4-lattice scalar field theory, because we want to
apply the same technique to understand the UV behaviour of the lattice quantum
gravity theory. Of course, it should be emphasized that the two theories differ in
important ways. First, because φ4-theory is renormalizable in four dimensions,
we know a priori that it suffices to study the flow in the bare couplings m0 and λ0:
if no UV fixed point is found along lines of constant λR in the (m0, λ0)-plane, it
does not exist. On the other hand, gravity is not renormalizable, and restricting
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the search for a UV fixed point to the two-dimensional coupling constant space
spanned by (κ0,∆) – although suggestive because of the observed second-order
transition line – may ultimately not be sufficient.

Second, while the meaning of lines of constant physics is relatively straightfor-
ward in φ4-theory, the same cannot be said about this concept in nonperturbative
and background-independent quantum gravity, because any measure of length one
uses is defined in terms of geometry, which is subject to the dynamics of the the-
ory. As will become clear in the remainder of this paper, defining lines of constant
physics in terms of suitable geometric observables needs considerable care and is
at this stage much more tentative than in the case of scalar field theory.

4 Application to nonperturbative gravity

In the present application to quantum gravity, we will use the coupling constant
flow in the form (5), staying at a constant spacetime volume V4 =N4a

4 for the
universe, where N4 is the number of four-simplices5. How can we make sure that
it is consistent to view V4 as constant when we increase the lattice volume N4? In
the case of ordinary field theory we achieved this by using the physical correlation
length as a fixed yardstick and requiring md

RVd to remain constant. Since in the
CDT pure gravity model we do not have a similar simple correlation length at
our disposal, we need to find another indicator of constant physics.

In phase C, at least somewhat away from the B-C phase boundary, the three-
volume profile of the universe is to excellent approximation given by [21]

〈N3(i)〉N4 = N4
3

4

1

ωN
1/4
4

cos3

(
i

ωN
1/4
4

)
, |i| ≤ π

2
ωN

1/4
4 , (6)

and the variance of the spatial volume fluctuations δN3(i) :=N3(i)− 〈N3(i)〉 by

〈(δN3(i))
2〉N4 = γ2 N4 F

(
i

ωN
1/4
4

)
, (7)

for a specific function F , whose details are not important for the discussion at
hand. Both profiles are functions of the lattice time i. The number of spacelike
three-simplices at fixed integer time i is denoted by N3(i), and the parameters ω
and γ depend on the geometric properties of the triangular building blocks and
the bare coupling constants κ0 and ∆.

The profiles (6) and (7) represent finite-size scaling relations, and show in the

first place that the time extension of the universe scales like N
1/4
4 and its spatial

5Strictly speaking, we are keeping the number N
(4,1)
4 of four-simplices of type (4, 1) constant,

see [21] for a discussion. The distinction is not important for our present analysis.
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volume at a given time like N
3/4
4 , as one would expect from a four-dimensional

spacetime. This might seem like a triviality since we started out with four-
dimensional building blocks, but in a set-up where no background geometry is
put in by hand it is not: all our results are extrapolated to an infinite limit (N4 →
∞), and in this limit nonperturbative contributions from the summed-over path
integral histories play an important role in bringing about the final outcome. To
illustrate the point, no four-dimensional macroscopic scaling behaviour is found
in phases A and B of the present model, although they are of course based on
exactly the same (microscopically four-dimensional) building blocks. Similarly,
one may in principle find deviations from such a scaling inside phase C when
getting close to the second-order transition between phases B and C.

The data (6) and (7) extracted from the Monte Carlo simulations in phase
C at fixed lattice volume N4 allow us to interpret the ground state of geometry
as a macroscopically four-dimensional quantum universe with a definite average
volume profile and a definite behaviour of the average quantum fluctuations of the
spatial volume around it. Moreover, making a specific identification of continuum
proper time with lattice proper time (by fixing a relative constant for given values
of the bare couplings), these properties are characteristic for a de Sitter universe
[21].

Sufficiently far away from the phase boundaries of phase C the data summa-
rized in relations (6) and (7) is compatible with the discretized action

Sdiscr = k1
∑
i

(
(N3(i+ 1)−N3(i))

2

N3(i)
+ k̃N

1/3
3 (i)

)
, (8)

which was reconstructed from measuring the correlation function of spatial three-
volumes [21] and has the form

〈δN3(i) δN3(i
′)〉N4

= γ2N4 F

(
i

ωN
1/4
4

,
i′

ωN
1/4
4

)
, (9)

where it is understood that the function F for identical arguments coincides with
the function F on the right-hand side of eq. (7). For sufficiently large N4 and
to first approximation, the measured parameters k1 and k̃ in the reconstructed
action (8) were shown to be independent of N4 and the coefficient γ in (7) was
shown to be related to k1 by

γ ∝ 1√
k1
. (10)

Phrased differently, for appropriate choice of the coupling k̃ the classical solution
to the discretized action (8), solved under the constraint of fixed N4, is well
approximated by the observed distribution 〈N3(i)〉N4 of (6). In addition, the
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observed behaviour of the volume fluctuations, eqs. (7) and (9), is well described
by expanding the action (8) to quadratic order around the average profile (6),
thus leading to (10). Note finally that the coupling constant k̃ is a function of ω
if the distribution (6) is to represent the local minimum of Sdiscr for large, but
fixed N4, namely

k̃ = 9

(
3

4ω4

)2/3

. (11)

A natural starting point for trying to relate the above results to continuum
physics is to compare the effective action (8) for the spatial three-volume (con-
structed from numerical “observations”) with a minisuperspace action for the
scale factor of a homogeneous, isotropic universe with spatial slices of the same
S3-topology. We can then ask which continuum minisuperspace actions can be
matched to an emergent background like (6). The line element of (Euclidean)
minisuperspace is

ds2 = N2(t)dt2 + a2(t)dΩ2
3, (12)

where a(t) is the scale factor, N(t) the lapse function and dΩ2
3 the line element on

the unit three-sphere, such that the spatial volume at time t is V3(t) = 2π2a3(t).
As we have already argued in the introduction, Hořava-Lifshitz gravity pro-

vides a natural and potentially useful reference frame for nonperturbative proper-
ties of CDT quantum gravity. Also in our present analysis of the renormalization
group flow we will use an extended class of reference metrics of type (12), includ-
ing minisuperspace models of Hořava-Lifshitz type.

Recall that the quadratic part of the action of projectable6 HLG in four di-
mensions in terms of the three-metric gij(x, t) and the extrinsic curvature Kij(x, t)
reads

Scont = κ̃

∫
dt d3xN(t)

√
g (KijK

ij − λK2 + δ̃ (3)R), (13)

where N(t) is the lapse function and (3)R is the intrinsic scalar curvature of
the spatial three-geometry. For the parameter values λ = 1 and δ̃ = −1 one
obtains the standard form of the Euclidean Einstein action, in which case one
can identify κ̃ = 1/(16πG), where G is the gravitational coupling. The three
terms in parentheses on the right-hand side of (13) are separately invariant under
foliation-preserving diffeomorphisms, the invariance group of HLG.

Using the metric ansatz (12), with a(t) re-expressed in terms of V3(t), the
continuum HLG action (13) becomes

Scont = κ

∫
dtN(t)

( V̇3
2

N2V3
+ δ V

1/3
3

)
,

δ

δ̃
=

18(2π2)2/3

1− 3λ
,

κ

κ̃
=

1− 3λ

3
. (14)

6Because of the symmetry reduction to minisuperspace we are considering below, the differ-
ence between projectable and nonprojectable HLG will not play a role here.
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Firstly, the equation of motion derived for V3(t) from the action (14), under the
constraint that the total four-volume is V4, is solved by

V3(τ) = V4
3

4

(
8π2

3χ3V4

)1/4

cos3

((
8π2

3χ3V4

)1/4

τ

)
, N = const., (15)

which we have written in a form that facilitates comparison with the lattice
expression (6). It is of course precisely the match of the lattice results with a
classical cos3-profile (15) that allows us to identify lattice time with a continuum
time t, which is a constant multiple of continuum proper time τ ,

τ = N t, N = const. (16)

The parameter χ in relation (15) is defined as

χ2 =
9(2π2)2/3

δ
. (17)

Computing the scale factor a(t) corresponding to the volume profile (15) and
substituting it into the line element (12) one obtains

ds2 = dτ 2 +R2 cos2
(

τ

χR

)
dΩ2

3, R =

(
3V4

8π2χ

)1/4

. (18)

Unless χ equals its general relativistic value χ = 1 this describes a deformed four-
sphere with time extension πχR and spatial extension πR, R being the (maximal)
radius of the spatial three-sphere7.

Next, comparing the continuum expressions (14)–(17) with the correspond-
ing lattice expressions (6) and (8) and assuming V4 ∝ N4a

4, one is led to the
identifications

τi ∝
(
χ3/4

ω

)
i · a, k1 ∝

(
ω

χ3/4

)2

a2κ, k̃ ∝
(
χ3/4

ω

)8/3

δ. (19)

We note that in the transition from lattice to continuum data only the ratio of
ω and χ3/4 appears. The first relation in (19) reiterates our earlier assertion that
the continuum proper time can be viewed as proportional to the integer lattice
time multiplied by the lattice spacing, where the said ratio is now seen to enter.

Following the logic outlined at the beginning of this section, we would now
like to define a path of constant continuum physics in the coupling constant
space spanned by (κ0,∆). In doing this, we want to keep the total four-volume

7The geometry of the deformed four-sphere is not smooth at τ = ±χπR/2. The intrinsic
curvature is discontinuous but integrable at these points.
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V4 ∝ N4a
4 fixed. This will enable us to take the lattice spacing a→ 0 by changing

N4, a parameter we can control explicitly. Our definition of what constitutes
“constant physics” will rely on the assumptions that (i) throughout phase C
the behaviour of the three-volume is described adequately by the (semi-)classical
continuum formulas derived above, and (ii) we can associate space- and time-
like lattice units with continuum proper distances and proper times in a way
that inside phase C is independent of κ0 and ∆. More precisely, regarding this
latter point it is sufficient to make the weaker assumption that the ratio of unit
proper distance and unit proper time is a fixed number times the speed of light
c throughout coupling constant space.8 This is equivalent to keeping fixed the
ratio ω/χ3/4 in relations (19).

Under these assumptions, keeping ω constant in the simulations implies a con-
stant χ and thus a constant volume profile, giving us one criterion for constant,
macroscopic physics. However, keeping ω(κ0,∆) fixed is not sufficient to ensure
that the emergent continuum universe is unchanged in the limit N4 → ∞. De-
noting the typical size of volume fluctuations by |δN3(i)| := 〈N3(i)N3(i)〉1/2N4

and
analogously for |δV3(τ)|, one has

|δV3(τi)|
V3(τi)

=
|δN3(i)|
〈N3(i)〉

∝ γ(κ0,∆)ω(κ0,∆)

N
1/4
4

(
∝ χ3/4

√
κV

1/4
4

)
, (20)

where the result in parentheses follows from relations (10) and (19), and the
scaling should be understood for fixed times τ . In view of the proportionality
τi ∝ i/N

1/4
4 from (19) above, the discrete time label i used in N3(i) and δN3(i)

should change proportional to τN
1/4
4 when changing N4. According to our as-

sumptions the three-volume profile V3(τ) and the fluctuation size |δV3(τ)| are
physical quantities, and the ratio |δN3(i)|/N3(i) (with the interpretation of i just
given) must therefore remain constant along any path of constant physics in the
space of bare coupling constants.

First, note that staying at a given point (κ0,∆) while taking N4 →∞ does not
correspond to constant continuum physics. Rather, according to (20) it describes
a situation where V3(τ) (and V4) go to infinity, and the fluctuations around this
macroscopic universe become ever smaller relative to V3(τ). Since we have al-
ready established that ω(κ0,∆) must be kept fixed along a trajectory of constant
physics, eq. (20) implies that as N4 →∞ we must follow a path (κ0(N4),∆(N4))
satisfying

γ(κ0(N4),∆(N4)) ∝ N
1/4
4 , ω(κ0(N4),∆(N4)) = const. (21)

8Note that in the continuum expressions used above we have set c = 1, ~ = 1 everywhere.
Re-introducing them makes it explicit that the parameter χ defined in eq. (17) above has the
dimension of an inverse velocity, and that the product c · χ is therefore dimensionless.
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Figure 2: Contour plots in phase C of the parameters ω(κ0,∆) (left) and γ(κ0,∆)
(right), used to characterize trajectories of constant physics. They behave roughly
oppositely, ω decreasing and γ increasing toward the bottom right. Their product
ω · γ changes only moderately, as illustrated by Fig. 3 below.

This pair of conditions can be regarded as the CDT equivalent of keeping V4
constant in scalar field theory by insisting that the correlation length satisfies
ξ ∝ N

1/d
d , as discussed above. Furthermore, we read off from relation (20) that

the conditions (21) are consistent with a physical situation where also the gravi-
tational coupling constant κ is kept fixed. In the next section we will investigate
whether it is possible to satisfy (21) in the limit as N4 →∞.

5 Measuring indicators of constant physics

In phase C of the CDT phase diagram we have performed a systematic study
measuring the distributions N3(i) for a fixed number N4 of building blocks. By
fitting, following the procedure outlined in [21], we can determine ω(κ0,∆) and
γ(κ0,∆) for given N4. Our analysis assumes that the values of ω(κ0,∆) and
γ(κ0,∆) will only change little with increasing N4. This assumption is well tested

inside phase C, and for the fixed four-volume we have been using, namely, N
(4,1)
4 =

40.000. Any significant changes in ω and γ must therefore be due to changes in the
bare couplings κ0 and ∆. A dense grid of measuring points in coupling constant
space was used to collect the relevant data. Details of this computing-intensive
process will be published elsewhere. The resulting contour plots for ω(κ0,∆)
and γ(κ0,∆) in the (κ0,∆)-plane (Fig. 2) can be interpreted directly in terms of
constant physics: moving along any given line of constant ω on the left contour
plot, we can read off from the right contour plot how γ changes along this line,
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Figure 3: Contour plot of the product ω(κ0,∆) · γ(κ0,∆) on coupling constant
space.

and in particular whether it increases as desired for a UV limit.
Approaching the B-C phase boundary, which lies along the bottom of the

two plots of Fig. 2, we observe that ω decreases significantly, while γ increases
somewhat, as one would expect when approaching a second-order phase transition
line. However, this increase does not appear to be large enough to result in an
increase of the product ω(κ0,∆) ·γ(κ0,∆). According to the logic outlined above,
this product should go to infinity in a UV limit where V4 and κ stay constant while
we take a → 0. At least in the region where we can measure reliably, somewhat
away from the transition line, the product ω · γ changes little, as can be seen
in Fig. 3. Close to the B-C phase transition line our results are not reliable.
Autocorrelation times grow enormously, and the decrease in the parameter ω
means that the universe becomes very short in the time direction, rendering the
use of the effective action (8) questionable.

6 UV fixed point scenario

In the minisuperspace action (14) we have introduced a generalized inverse grav-
itational coupling constant κ, which has mass dimension 2 and incorporates a
dependence on the HLG-parameter λ. We can introduce a corresponding dimen-
sionless coupling κ̂ via κ(a) = κ̂(a)/a2. Comparing with relations (19), we see
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that κ̂(a) ∝ (ω/χ3/4)2k1(a). Of course, this identification is only meaningful as
long as physics is well described by the effective actions (14) and (8). At least
well inside phase C this is known to be the case.

For long-distance physics we expect κ to be a constant, implying that k1 should
behave like k1(a) ∝ κ · a2 ∝ κ (V4/N4)

1/2. This implies the scaling behaviour

γ ∝ 1/
√
k1 ∝ N

1/4
4 , which we have already discussed earlier as a requirement of

constant physics. However, this is not the behaviour one would in general expect
to encounter at a UV fixed point. By definition a nonperturbative UV fixed point
is one where the dimensionless coupling goes to a finite fixed value, κ̂(a) → κ̂∗.
Consequently, the analogue of the expansion (5) for the inverse gravitational
coupling constant is given by

κ̂(N4) = κ̂∗ + const. N
β′/4
4 , β′ < 0, (22)

provided we are in the vicinity of the fixed point κ̂∗ and move on a trajectory
where V4 is kept constant. According to relations (19) and (22) this implies a
k1-behaviour of the form

k1(N4) ∝
(

ω

χ3/4

)2

κ̂∗ (large N4). (23)

Still assuming that our minisuperspace analysis provides a reliable frame of ref-
erence, this leads to

|δV3(τi)|
V3(τi)

=
|δN3(i)|
〈N3(i)〉

∝ ω(κ0(N4),∆(N4))√
k1(N4)N

1/4
4

∝ χ(κ0(N4),∆(N4))
3/4

κ̂∗N
1/4
4

(large N4).

(24)
We conclude that this quotient cannot be kept constant in the neighbourhood
of the UV fixed point and for constant χ, unless for some reason κ̂∗ = 0. One
way to make a vanishing fixed-point value for k1 appear natural is by explicitly
invoking the HLG-parameter λ and discussing the UV fixed point in terms of the
coupling constant κ̃, which appears in the continuum action (13). In terms of its
dimensionless counterpart ˆ̃κ(a) :=a2κ̃(a) one would make an ansatz

ˆ̃κ(N4) = ˆ̃κ∗ + const. N
β′/4
4 , β′ < 0, (25)

analogous to (22). However, because of κ=(1
3
−λ)κ̃, in place of relation (23) one

then obtains

k1(N4) ∝
(

1

3
− λ
)(

ω

χ3/4

)2

ˆ̃κ∗ (large N4). (26)

This now leaves open the possibility of a vanishing k1 at the ultraviolet fixed
point, k1(N4) → 0, provided one chooses to scale λ → 1/3 at the same time.
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Note that by doing so one gives up staying on a curve of constant physics, in
the sense of keeping V4, V3, |δV3| and the shape of the emergent semiclassical
minisuperspace geometry fixed. The reason is that according to

χ2 =
1− 3λ

2δ̃
(27)

(c.f. eq. (14) and (17)) a change in λ implies a change in χ, the parameter describ-
ing the shape of the universe, unless we choose to scale δ̃ precisely as δ̃∝(1−3λ).
According to our assumptions, ω then also changes. If δ̃ stays constant or goes to
zero slower than (1−3λ), both χ→ 0 and ω → 0 at the UV fixed point. Since we
observe in our computer simulations that ω goes towards zero when we approach
the B-C second-order phase transition line, the line appears as a candidate for UV
fixed points in this particular scenario. Approaching it along some path where χ
(and therefore ω) decreases but V4 is kept fixed implies that V3 ∝ (V4/χ)3/4 is no
longer constant. Also the constancy criterion (20) for |δV3|/V3 can no longer be
applied in a straightforward manner.

If on the other hand we choose to scale δ̃ like (1 − 3λ), we can maintain
the concept of constant shape and three-volume V3 for fixed V4. We are then
back to the situation analyzed previously; γ has to grow proportional to N

1/4
4

along paths of constant ω, with the only difference that this now allows for a UV
interpretation in terms of κ̃ rather than κ. However, as discussed in the previous
section, there is little support for this growth from the data, at least in the region
where we can measure reliably.

7 Discussion and conclusion

In this paper, we have presented the results of a first nonperturbative analy-
sis of renormalization group flows in four-dimensional CDT quantum gravity.
Since a second-order phase transition line has been found in this formulation of
quantum gravity [9] – thus far a very rare occurrence in dynamical models of
higher-dimensional geometry – how this line may be reached along suitably de-
fined RG trajectories in phase space will give us important information about
the theory’s ultraviolet regime. It will also allow us to make a closer comparison
with continuum investigations of gravity in terms of functional renormalization
group techniques and may provide an independent check on ultraviolet fixed point
scenarios derived in this approach.

As explained in Secs. 3 and 4, we use conventional lattice methods to inves-
tigate the behaviour near the phase transition, adapted to the case of dynamical
geometry, where we do not have a fixed background geometry to refer to and
any physical yardstick for measuring distances has to be generated dynamically.
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Taking a UV limit is achieved formally by sending the lattice spacing a to zero,
but to make this into a physically meaningful prescription a has to be related
to some physical length units. As illustrated by the scalar field example, this is
usually done by referring to the correlation length. Alternatively, since in the
case of gravity we currently do not have a suitable correlation length available,
one may also refer to the total volume of the system, and re-express scaling re-
lations near a fixed point in terms of this volume, as illustrated by eq. (5). This
is the strategy we follow for gravity to make sure that we have a true, physical
implementation of the ultraviolet limit. The difference with the scalar field case
is that the macroscopic reference volume used is generated dynamically, and any
possible dependence on the bare couplings should be considered carefully, because
it can have an influence on how one defines ‘lines of constant physics’ on coupling
constant space.

For the latter we have made the most direct ansatz available in CDT gravity,
namely, to define constant physics in terms of the physical quantities character-
izing the macroscopic universe that emerges as the ground state of the quantum
dynamics. These are its total four-volume, its three-volume as a function of
proper time and quantum fluctuations of the three-volume around its mean, the
so-called volume profile. We have interpreted all of them physically in terms of a
class of homogeneous and isotropic cosmological solutions of Hořava-Lifshitz type,
and have assumed that this interpretation is valid throughout phase C, where we
observe extended geometry. At the same time we have assumed that we can
make an identification of lattice units in terms of continuum proper times and
distances that likewise remains unchanged inside phase C. Conceptually, these
are the most straightforward assumptions one can make, and it is important to
understand what conclusions they lead to.

Concretely, we then defined lines of constant physics by keeping the shape
parameter ω(κ0,∆) constant, as well as the relative size of three-volume fluctu-

ations, leading to the scaling requirement γ(κ0,∆) ∝ N
1/4
4 for the “fluctuation

parameter” γ in the UV limit N4 →∞. Analyzing the computer simulation data
presented above we saw no concrete indication that the second-order B-C phase
transition line is reached when flowing along any of the lines of constant physics.
Instead, the lines of constant ω(κ0,∆) run parallel to the B-C phase transition
line if one starts in the vicinity of this line. Increasing γ(κ0,∆) along such a line
brings one close to the triple point of the phase diagram. For the finite value of
N4 used here, curves of constant ω eventually turn away from the triple point and
run parallel to the A-C transition line. However, this may well be a finite-volume
effect, leaving open the possibility for flow lines to end up in the triple point. On
the other hand, on the basis of the measurements made up to now the increase
in γ when moving along a line of constant ω seems to be too slow to satisfy the
criteria of constant physics for N4 →∞.
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However, as we described in Sec. 7, it is possible to view the B-C line as a
second-order UV phase transition line for the HLG action (13), if we allow for a
suitable scaling of “little lambda”, λ→ 1/3.9 In this interpretation an anisotropy
between space and time develops as one moves along flow lines, corresponding to
χ→ 0 in (18).

It is clear that the next step in our investigation of renormalization group
flows will be a more extended analysis of different UV scaling scenarios, where in
particular our current assumption of “frozen” proper distance units throughout
coupling constant space is relaxed, which will have consequences for how “con-
stant physics” is defined. It would also allow us to consider a scenario where the
shape of the emergent universes is interpreted in terms of round four-spheres,
at least somewhat away from the phase transition, as we have done in previous
work [19, 21], in contrast to the family of deformed spheres we have used here.
It is clear that this can change the running of the renormalization group flows
significantly, and improve on the results found in the present work, where we have
adopted rather conservative assumptions about scaling and constant physics.

Using different notions of constant physics close to the phase transition is
certainly well motivated by nonclassical features of quantum geometry already
found on Planckian scales, like the anomalous behaviour of the spectral dimension
[7], and by taking seriously anisotropic scaling scenarios à la Hořava in the UV,
which we have already argued constitute a natural frame of reference for our
investigation. There will be technical issues to deal with when investigating
different scalings near the B-C transition line, including the fact that the time
extension of the universe shrinks to only a few lattice spacings there, making
any construction of an effective action imprecise. One obvious solution would
be to increase the lattice size N4, but one also has to take into account the
critical slowing-down near the B-C transition (as one would expect), which makes
simulations there painfully slow. We are currently trying to circumvent this issue
by using the so-called transfer matrix formalism [25], where a large time extension
is not needed. Progress on this will be reported elsewhere.
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