50 research outputs found

    Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    Evaluating the Cellular Targets of Anti-4-1BB Agonist Antibody during Immunotherapy of a Pre-Established Tumor in Mice

    Get PDF
    Manipulation of the immune system represents a promising avenue for cancer therapy. Rational advances in immunotherapy of cancer will require an understanding of the precise correlates of protection. Agonistic antibodies against the tumor necrosis factor receptor family member 4-1BB are emerging as a promising tool in cancer therapy, with evidence that these antibodies expand both T cells as well as innate immune cells. Depletion studies have suggested that several cell types can play a role in these immunotherapeutic regimens, but do not reveal which cells must directly receive the 4-1BB signals for effective therapy.We show that re-activated memory T cells are superior to resting memory T cells in control of an 8-day pre-established E.G7 tumor in mice. We find that ex vivo activation of the memory T cells allows the activated effectors to continue to divide and enter the tumor, regardless of antigen-specificity; however, only antigen-specific reactivated memory T cells show any efficacy in tumor control. When agonistic anti-4-1BB antibody is combined with this optimized adoptive T cell therapy, 80% of mice survive and are fully protected from tumor rechallenge. Using 4-1BB-deficient mice and mixed bone marrow chimeras, we find that it is sufficient to have 4-1BB only on the endogenous host alphabeta T cells or only on the transferred T cells for the effects of anti-4-1BB to be realized. Conversely, although multiple immune cell types express 4-1BB and both T cells and APC expand during anti-4-1BB therapy, 4-1BB on cells other than alphabeta T cells is neither necessary nor sufficient for the effect of anti-4-1BB in this adoptive immunotherapy model.This study establishes alphabeta T cells rather than innate immune cells as the critical target in anti-4-1BB therapy of a pre-established tumor. The study also demonstrates that ex vivo activation of memory T cells prior to infusion allows antigen-specific tumor control without the need for reactivation of the memory T cells in the tumor

    Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms

    Get PDF
    Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses

    Bovine CD18 Is Necessary and Sufficient To Mediate Mannheimia (Pasteurella) haemolytica Leukotoxin-Induced Cytolysis

    No full text
    Leukotoxin (Lkt) secreted by Mannheimia (Pasteurella) haemolytica is an RTX toxin which is specific for ruminant leukocytes. Lkt binds to β(2) integrins on the surface of bovine leukocytes. β(2) integrins have a common β subunit, CD18, that associates with three distinct α chains, CD11a, CD11b, and CD11c, to give rise to three different β(2) integrins, CD11a/CD18 (LFA-1), CD11b/CD18 (Mac-1), and CD11c/CD18 (CR4), respectively. Our earlier studies revealed that Lkt binds to all three β(2) integrins, suggesting that the common β subunit, CD18, may be the receptor for Lkt. In order to unequivocally elucidate the role of bovine CD18 as a receptor for Lkt, a murine cell line nonsusceptible to Lkt (P815) was transfected with cDNA for bovine CD18. One of the transfectants, 2B2, stably expressed bovine CD18 on the cell surface. The 2B2 transfectant was effectively lysed by Lkt in a concentration-dependent manner, whereas the P815 parent cells were not. Immunoprecipitation of cell surface proteins of 2B2 with monoclonal antibodies specific for bovine CD18 or murine CD11a suggested that bovine CD18 was expressed on the cell surface of 2B2 as a heterodimer with murine CD11a. Expression of bovine CD18 and the Lkt-induced cytotoxicity of 2B2 cells were compared with those of bovine polymorphonuclear neutrophils and lymphocytes. There was a strong correlation between cell surface expression of bovine CD18 and percent cytotoxicity induced by Lkt. These results indicate that bovine CD18 is necessary and sufficient to mediate Lkt-induced cytolysis of target cells

    Varicella-Zoster Virus IE63, a Major Viral Latency Protein, Is Required To Inhibit the Alpha Interferon-Induced Antiviral Responseâ–¿

    No full text
    Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is the most abundant transcript expressed during latency in human sensory ganglia. VZV with ORF63 deleted is impaired for replication in melanoma cells and fibroblasts and for latency in rodents. We found that replication of the ORF63 deletion mutant is fully complemented in U2OS cells, which have been shown to complement the growth of herpes simplex virus type 1 (HSV-1) ICP0 mutants. Since HSV-1 ICP0 mutants are hypersensitive to alpha interferon (IFN-α), we examined the effect of IFN-α on VZV replication. Replication of the ORF63 mutant in melanoma cells was severely inhibited in the presence of IFN-α, in contrast to other VZV mutants that were similarly impaired for replication or to parental virus. The VZV ORF63 mutant was not hypersensitive to IFN-γ. IFN-α inhibited viral-gene expression in cells infected with the ORF63 mutant at a posttranscriptional level. Since IFN-α stimulates gene products that can phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF-2α) and inhibit translation, we determined whether cells infected with the ORF63 mutant had increased phosphorylation of eIF-2α compared with cells infected with parental virus. While phosphorylated eIF-2α was undetectable in uninfected cells or cells infected with parental virus, it was present in cells infected with the ORF63 mutant. Conversely, expression of IE63 (encoded by ORF63) in the absence of other viral proteins inhibited phosphorylation of eIF-2α. Since IFN-α has been shown to limit VZV replication in human skin xenografts, the ability of VZV IE63 to block the effects of the cytokine may play a critical role in VZV pathogenesis

    Adaptation of blockchain and smart contracts to the construction industry of developing countries

    No full text
    The construction industry is often criticised due to its inherited challenges. Lack of trust and transparency, inadequate collaboration and complex structure have plagued the construction sector. Blockchain is a technology that has the potential to address these issues by automating procedures and enhancing traceability and transparency with its salient features. Whereas adaptation of blockchain within the construction industry is still at its inception. The situation is bleak in developing countries and there are numerous barriers and limitations that impact the implementation process. Therefore, this paper aimed to distinguish the barriers that affect the adaptation of blockchain and smart contracts for the construction industry of developing countries. The study used a mixed research approach. The barriers were ranked based on the data collected through a questionnaire survey and strategies to overcome them were identified through expert interviews. Findings derived from the analysis indicate that having a limited number of construction related software applications (powered by blockchain), the reluctance of the companies to bear additional costs to adapt blockchain and sluggish adaptation to new technologies as the significant barriers. As per the identified strategies, conducting an industry-wide digitalisation analysis, developing an industry-wide digitalisation strategy and recruiting skillful staff can be pointed out as the weighty strategies. The outcomes of this research were gained through the data collected from Sri Lanka, which is a limitation of this study. Eventually, a framework was developed as a guideline to implement blockchain and smart contracts for the construction industry of developing countries
    corecore