26 research outputs found

    Some findings on the spatial and temporal distribution of methane emissions in landfills

    Get PDF
    The purpose of this article is to present some facts of interest for the quantification of gas emissions in active landfills obtained from a series of field campaigns in a case study landfill where spatial and temporal patterns of methane emissions were analyzed. Nine campaigns were carried out to measure diffuse surface methane emissions at an European municipal waste landfill in operation using the static flow chamber technique in different seasons over three years. Results obtained show a global annual diffuse flux of 733.26 t CH4/year for the year 2020. Certain points on the surface, where concentrations reached values above 1000 ppm, were observed during the campaigns. These points, called "hotspots", represented only 10% of all the points measured but accounted for 73% of the total diffuse methane emissions (506 t CH4/year). Furthermore, localized emissions, such as those from landfill gas extraction wells, which were not connected to the general extraction network, were also analyzed. These localized emissions represent more than twice the total diffuse emissions measured on the surface (1500 t CH4/year). These results highlight the importance of identifying high emission points to design effective mitigation measures. Moreover, the influence of certain meteorological conditions such as atmospheric pressure, temperature or rainfall was also studied. A new particular effect has been detected regarding precipitation, which favors or hinders methane emissions depending on the volume accumulated during the previous weeks. Pressure was found to be the factor that most affects methane emission variations in the case studied, presenting a clear inverse correlation with the field data that was collected. This suggests the need to consider the meteorological fluctuations over time to calculate the field emission estimates. Correcting the annual estimation in the case studied by considering the atmospheric pressure fluctuations over the year led to a 14% change in the estimate, obtaining a final result of 836.73 t CH4/year for the total diffuse emissions

    Comparative of Lignocellulosic Ethanol Production by Kluyveromyces marxianus and Saccharomyces cerevisiae

    Get PDF
    The world faces a progressive depletion of its energy resources, mainly fossil fuels based on non-renewable resources. At the same time, the consumption of energy grows at high rates, and the intensive use of fossil fuels has led to an increase in the generation of gaseous pollutants released into the atmosphere, which has caused changes in the global climate. The lignocellulosic bioethanol is considered as a promising alternative for use as fuel ethanol. However, one of the main problems in producing ethanol is toxic compounds generated during hydrolysis of lignocellulosic wastes; these compounds cause a longer lag phase and irreversible cell damage to the microorganisms used in the fermentation step. These conditions of fermentation affect the productivity and the economic feasibility of the lignocellulosic ethanol production process. In this context, many efforts had been carried out to improve the capacity of volumetric ethanol productivity of the yeast. The yeast Saccharomyces cerevisiae is commonly employed in industrial ethanol production. However non-Saccharomyces yeast as Kluyveromyces marxianus can produce alcohols at similar or higher levels than S. cerevisiae and on inhibitory conditions

    Second-Generation Bioethanol Production through a Simultaneous Saccharification-Fermentation Process Using Kluyveromyces Marxianus Thermotolerant Yeast

    Get PDF
    Due to the present renewable fuels demand increase, reduction of second-generation bioethanol production cost is pursued, since it is considered the most promising biofuel, but not yet economically viable. A proposed solution is its production through a simultaneous saccharification and fermentation process (SSF); however, it is necessary to apply temperatures above 40°C, which reduce the viability of traditional ethanologenic yeasts. As consequence, the use of thermotolerant ethanologenic yeast has been suggested, among which the yeast Kluyveromyces marxianus stands out. This chapter addresses the production of second-generation bioethanol through the SSF process, emphasizing the potential of K. marxianus to transform lignocellulosic biomass as agave bagasse. As result, it is proposed to direct the second-generation bioethanol production to the SSF process employing thermotolerant yeasts, to increase process productivity, and addressing the economic barriers

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions

    Get PDF
    Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics

    Galactooligosaccharide Production from Pantoea anthophila Strains Isolated from “Tejuino”, a Mexican Traditional Fermented Beverage

    Get PDF
    Two Pantoea anthophila bacterial strains were isolated from “tejuino”, a traditional Mexican beverage, and studied as β-galactosidase producers for galactooligosaccharides synthesis. Using 400 g/L of lactose, 50 °C, and 15 U/mL of β-galactosidase activity with ethanol-permeabilized cells, the maximum galactooligosaccharides (GOS) yield determined by High performance anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) was 136 g/L (34% w/w of total sugars) at 96% of lactose conversion for Bac 55.2 and 145 g/L (36% w/w of total sugars) at 94% of lactose conversion for Bac 69.1. The main synthesized products were the disaccharides allolactose [Gal-β(1 → 6)-Glc] and 6-galactobiose [Gal-β(1 → 6)-Gal], as well as the trisaccharides 3′-galactosyl-lactose [Gal-β(1 → 3)-Gal-β(1 → 4)-Glc], 6-galactotriose [Gal-β(1 → 6)-Gal-β(1 → 6)-Gal], 3′-galactosyl-allolactose [Gal-β(1 → 3)-Gal-β(1 → 6)-Glc], and 6′-galactosyl-lactose [Gal-β(1 → 6)-Gal-β(1 → 4)-Glc]. The β-galactosidases present in both strains showed a high transgalactosylation activity and formed principally β(1 → 3) and β(1 → 6) linkages. Considering the stability and bifidogenic properties of GOS containing such types of bonds, P. anthophila strains Bac 55.2 and Bac 69.1 possess a high potential as novel biocatalysts for prebiotic industrial production.This research was supported by the CONACYT project CB-2012-01/000000000181766, and by the Spanish Ministry of Economy and Competitiveness (projects BIO2013-48779-C4-1/3/4 and BIO2016-76601-C3-1-R/2-R/3-R).Peer reviewe

    The importance of particularising the model to estimate landfill GHG emissions

    No full text
    Methane generation in landfills can be estimated using mathematical models. One of the most widespread estimation models is that developed by the Intergovernmental Panel on Climate Change (IPCC). Despite its popularity, the simplicity that characterises this model markedly limits the possibility of representing operation alternatives, which can strongly impact surface emissions and hinder the introduction of local data that are sometimes available. In this study, the IPCC model was applied to a case study from which field data on gas emissions were available. To fit the model to the studied landfill conditions, a series of modifications were made, including changes in Degradable Organic Carbon (DOC) and methane generation rate constant (k) values, and degradation times for some waste fractions, and by considering leachate carbon and the inclusion of gas lateral migration phenomena or changes in the methane oxidation factor. The model's Final Version improved the fit of its Initial Version to the experimentally estimated values in the case study by more than 65%. Some modifications, such as considering the carbon dragged by leachate or the contour migration of gas, have a minor impact on the model's fit. However, changes in the degradation time of some fractions according to their particular pretreatment or the modification of parameter k in accordance with the moisture conditions in each landfill phase, strongly influence the model's results. This highlights the importance of particularising estimation models to achieve more accurate results, which allow better estimates of the efficiency of mitigation measures for landfill gas emissions in each facility

    One-pot bi-enzymatic cascade synthesis of puerarin polyfructosides

    No full text
    Enzymatic glycosylation is an efficient way to increase the water solubility and the bioavailability of flavonoids. Levansucrases from Bacillus subtilis (Bs_SacB), Gluconacetobacter diazotrophicus (Gd_LsdA), Leuconostoc mesenteroides (Lm_LevS) and Zymomonas mobilis (Zm_LevU) were screened for puerarin (daidzein-8-C-glucoside) fructosylation. Gd_LsdA transferred the fructosyl unit of sucrose onto the glucosyl unit of the acceptor forming beta-D-fructofuranosyl-(2 -> 6)-puerarin (P1a), while Bs_SacB, Lm_LevS and Zm_LevU synthesized puerarin-4'-O-beta-D-fructofuranoside (P1b) and traces of P1a. The Gd_LsdA product P1a was purified and assayed as precursor for the synthesis of puerarin polyfructosides (PPFs). Bs_SacB elongated P1a more competently forming a linear series of water-soluble PPFs reaching at least 21 fructosyl units, as characterized by HPLC-UV-MS, HPSEC and MALDI-TOF-MS. Simultaneous or sequential Gd_LsdA/Bs_SacB reactions yielded PPFs directly from puerarin with the acceptor conversion ranging 82-92 %. The bi-enzymatic cascade synthesis of PPFs in the same reactor avoided the isolation of the intermediate product P1a and it is appropriate for use at industrial scale

    Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila

    No full text
    Background: Milk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by β-galactosidases. Results: B-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with β(1 → 6) and β(1 → 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD. Conclusions: B-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides. How to cite: Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, et al. Synthesis of β(1→3) and β(1→6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electron J Biotechnol 2020;49. https://dx.doi.org/10.1016/j.ejbt.2020.10.004This work was supported by the bilateral project CONACYT-ANUIES/ECOS-NORD M14A01, CONACYT project CB-2012-01/000000000181766 and CONACYT and the FODECIJAL project7907-2019. This work was also supported by a grant from the Spanish Ministry of Economy and Competitiveness (GrantBIO2016-76601-C3-1-R). We thank CONACYT for Ph.D. grants to Fadia Cervantes and Claudia Yañe

    Functionalization of natural compounds by enzymatic fructosylation

    No full text
    Enzymatic fructosylation of organic acceptors other than sugar opens access to the production of new molecules that do not exist in nature. These new glycoconjugates may have improved physical-chemical and bioactive properties like solubility, stability, bioavailability, and bioactivity. This review focuses on different classes of acceptors including alkyl alcohols, aromatic alcohols, alkaloids, flavonoids, and xanthonoids, which were tested for the production of fructoderivatives using enzymes from the glycoside hydrolase (GH) families 32 and 68 that use sucrose as donor substrate. The enzymatic strategies and the reaction conditions required for the achievement of these complex reactions are discussed, in particular with regard to the type of acceptors. The solubility and pharmacokinetic and antioxidant activity of some of these new beta-D-fructofuranosides in comparison is reviewed and compared with their glucoside analogs to highlight the differences between these molecules for technological applications
    corecore