8,409 research outputs found

    A binocular-type atmospheric interaction generating sequential exotic features

    Get PDF
    A cosmic-ray induced nuclear event is presented, which is of clear binocular-type and contains several exotic features through its passage in the atmosphere and the emulsion chamber

    A halo event created at 200 m above the Chacaltaya emulsion chamber

    Get PDF
    The results of analysis on a cosmic-ray induced nuclear event with the total visible energy approx. = 1300 TeV which is characterized by the central (halo) part of a strong energy concentration and the outer part of a large lateral spread are presented. The event (named as P06) was detected in the 18th two-storied emulsion chamber exposed at Chacaltaya by Brasil-Japan Collaboration. As the nuclear emulsion plates were inserted at every layer of the concerned blocks in the upper and the lower chambers together with RR- and N-type X-ray films, it is possible to study the details of the event. Some results on P06 have already been reported 1 based on the general measurement of opacity on N-type X-ray films: (1) the total energy of halo is approx. = 1000 TeV; (2) the shower transition reaches its maximum at approx. 16 cu; and (3) the radius of halo is 6.5 mm (at the level of 10 to the 6th power electrons/sq.cm.). The results in more details will be described

    Atmospheric interactions detected in both the upper and the lower chambers at Chacaltaya

    Get PDF
    The cosmic ray interactions in the energy region 10 to the 13th power to 10 to the 17th power eV were studied by emulsion chambers exposed at Chacaltaya, 5220 m above sea-level. The chambers have a two-storied structure, and the events observed in both chambers give important informations on these phenomena. The first Centauro event was detected as a small shower at the bottom of the upper chamber and as a big fraction of energy deposit in the lower chamber, which indicates a high contribution of hadronic showers. Results of the events with continuation in the rather low energy region are described

    Evidence for spin liquid ground state in SrDy2_2O4_4 frustrated magnet probed by muSR

    Full text link
    Muon spin relaxation (μ\muSR) measurements were carried out on SrDy2_2O4_4, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from T=300T=300 K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at T=20T=20 mK indicates that SrDy2_2O4_4 features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of μ0H=2\mu_0H=2 T, a non-relaxing asymmetry contribution appears below T=6T=6 K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in Journal of Physics: Conference Series (JPCS

    Magnetism in heavy-fermion U(Pt,Pd)3 studied by mSR

    Full text link
    We report mSR experiments carried out on a series of heavy-electron pseudobinary compounds U(Pt1-xPdx)3 (x<=0.05). For x<=0.005 the zero-field muon depolarisation is described by the Kubo-Toyabe function. However the temperature variation of the Kubo-Toyabe relaxation rate does not show any sign of the small-moment antiferromagnetic phase with TN~6 K (signalled by neutron diffraction), in contrast to previous reports. The failure to detect the small ordered moment suggests it has a fluctuating (> 10 MHz) nature, which is consistent with the interpretation of NMR data. For 0.01<=x<=0.05 the muon depolarisation in the ordered state is described by two terms of equal amplitude: an exponentially damped spontaneous oscillation and a Lorentzian Kubo-Toyabe function. These terms are associated with antiferromagnetic order with substantial moments. The Knight-shift measured in a magnetic field of 0.6 T on single-crystalline U(Pt0.95Pd0.05)3 in the paramagnetic state shows two signals for B perpendicular to c, while only one signal is observed for B||c. The observation of two signals for B perpendicular to c, while there is only one muon localisation site (0,0,0), points to the presence of two spatially distinct regions of different magnetic response.Comment: 25 pages including 12 figures (PS), J. Phys.: Condens. Matter, in prin

    Magnetic quantum critical point and superconductivity in UPt3 doped with Pd

    Get PDF
    Transverse-field muon spin relaxation measurements have been carried out on the heavy-fermion superconductor UPt3 doped with small amounts of Pd. We find that the critical Pd concentration for the emergence of the large-moment antiferromagnetic phase is ~0.6 at.%Pd. At the same Pd content, superconductivity is completely suppressed. The existence of a magnetic quantum critical point in the phase diagram, which coincides with the critical point for superconductivity, provides evidence for ferromagnetic spin-fluctuation mediated odd-parity superconductivity, which competes with antiferromagnetic order.Comment: 4 pages (includes 3 figures); postscript fil

    Magnetic quantum critical point and superconductivity in UPt3 doped with Pd

    Full text link
    Transverse-field muon spin relaxation measurements have been carried out on the heavy-fermion superconductor UPt3 doped with small amounts of Pd. We find that the critical Pd concentration for the emergence of the large-moment antiferromagnetic phase is ~0.6 at.%Pd. At the same Pd content, superconductivity is completely suppressed. The existence of a magnetic quantum critical point in the phase diagram, which coincides with the critical point for superconductivity, provides evidence for ferromagnetic spin-fluctuation mediated odd-parity superconductivity, which competes with antiferromagnetic order.Comment: 4 pages (includes 3 figures); postscript fil

    Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation

    Get PDF
    We have studied by muon spin resonance ({\mu}SR) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double period oscillations at short time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively associated with short range and long range ordered helices, coexist in a large temperature range below TN_{N} = 170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure

    Moho-depth and subglacial sedimentary layer thickness in the Wilkes Basin from Receiver Function Analysis

    Get PDF
    Wilkes Basin lies to the east of the Transantarctic Mountains. The origin of this sub-glacial basin is still controversial. Flexural uplift of the Transantarctic Mountains has been suggested as the geophysical process which generated the basin (Stern & ien Brink, 1989). Other studies proposed a continental rift structure for this region (Ferraccioli et al., 2001). The two models differ mainly in the crustal structure predicted beneath the basin. In the former, crustal thickning is expected to be originated from the high rigidity of the East Antarctic Craton lithosphere. Otherwise, the rift structure hypothesis is consistent with a broad crustal thinning. During the WIBEM 2003 campaign, we deployed five broadband seismic stations across the basin. We selected high signal/noise teleseismic recording to compute a data-set of receiver functions. We applied a classical inversion scheme, the Neighbourhood Algorithm, to our data-set. Here, two different and complementary studies are presented. We constrain the Moho geometry beneath the Wilkes Basin from the analysis of low-frequency P-to-S conversion at the base of the crust. Also, we investigate the nature of the basin mapping the presence of subglacial sediments using the P-to-S conversion at the ice-bedrock interface
    • …
    corecore