8,409 research outputs found
A binocular-type atmospheric interaction generating sequential exotic features
A cosmic-ray induced nuclear event is presented, which is of clear binocular-type and contains several exotic features through its passage in the atmosphere and the emulsion chamber
A halo event created at 200 m above the Chacaltaya emulsion chamber
The results of analysis on a cosmic-ray induced nuclear event with the total visible energy approx. = 1300 TeV which is characterized by the central (halo) part of a strong energy concentration and the outer part of a large lateral spread are presented. The event (named as P06) was detected in the 18th two-storied emulsion chamber exposed at Chacaltaya by Brasil-Japan Collaboration. As the nuclear emulsion plates were inserted at every layer of the concerned blocks in the upper and the lower chambers together with RR- and N-type X-ray films, it is possible to study the details of the event. Some results on P06 have already been reported 1 based on the general measurement of opacity on N-type X-ray films: (1) the total energy of halo is approx. = 1000 TeV; (2) the shower transition reaches its maximum at approx. 16 cu; and (3) the radius of halo is 6.5 mm (at the level of 10 to the 6th power electrons/sq.cm.). The results in more details will be described
Atmospheric interactions detected in both the upper and the lower chambers at Chacaltaya
The cosmic ray interactions in the energy region 10 to the 13th power to 10 to the 17th power eV were studied by emulsion chambers exposed at Chacaltaya, 5220 m above sea-level. The chambers have a two-storied structure, and the events observed in both chambers give important informations on these phenomena. The first Centauro event was detected as a small shower at the bottom of the upper chamber and as a big fraction of energy deposit in the lower chamber, which indicates a high contribution of hadronic showers. Results of the events with continuation in the rather low energy region are described
Evidence for spin liquid ground state in SrDyO frustrated magnet probed by muSR
Muon spin relaxation (SR) measurements were carried out on
SrDyO, a frustrated magnet featuring short range magnetic correlations
at low temperatures. Zero-field muon spin depolarization measurements
demonstrate that fast magnetic fluctuations are present from K down to
20 mK. The coexistence of short range magnetic correlations and fluctuations at
mK indicates that SrDyO features a spin liquid ground state.
Large longitudinal fields affect weakly the muon spin depolarization, also
suggesting the presence of fast fluctuations. For a longitudinal field of
T, a non-relaxing asymmetry contribution appears below K,
indicating considerable slowing down of the magnetic fluctuations as
field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in
Journal of Physics: Conference Series (JPCS
Magnetism in heavy-fermion U(Pt,Pd)3 studied by mSR
We report mSR experiments carried out on a series of heavy-electron
pseudobinary compounds U(Pt1-xPdx)3 (x<=0.05). For x<=0.005 the zero-field muon
depolarisation is described by the Kubo-Toyabe function. However the
temperature variation of the Kubo-Toyabe relaxation rate does not show any sign
of the small-moment antiferromagnetic phase with TN~6 K (signalled by neutron
diffraction), in contrast to previous reports. The failure to detect the small
ordered moment suggests it has a fluctuating (> 10 MHz) nature, which is
consistent with the interpretation of NMR data. For 0.01<=x<=0.05 the muon
depolarisation in the ordered state is described by two terms of equal
amplitude: an exponentially damped spontaneous oscillation and a Lorentzian
Kubo-Toyabe function. These terms are associated with antiferromagnetic order
with substantial moments. The Knight-shift measured in a magnetic field of 0.6
T on single-crystalline U(Pt0.95Pd0.05)3 in the paramagnetic state shows two
signals for B perpendicular to c, while only one signal is observed for B||c.
The observation of two signals for B perpendicular to c, while there is only
one muon localisation site (0,0,0), points to the presence of two spatially
distinct regions of different magnetic response.Comment: 25 pages including 12 figures (PS), J. Phys.: Condens. Matter, in
prin
Magnetic quantum critical point and superconductivity in UPt3 doped with Pd
Transverse-field muon spin relaxation measurements have been carried out on
the heavy-fermion superconductor UPt3 doped with small amounts of Pd. We find
that the critical Pd concentration for the emergence of the large-moment
antiferromagnetic phase is ~0.6 at.%Pd. At the same Pd content,
superconductivity is completely suppressed. The existence of a magnetic quantum
critical point in the phase diagram, which coincides with the critical point
for superconductivity, provides evidence for ferromagnetic spin-fluctuation
mediated odd-parity superconductivity, which competes with antiferromagnetic
order.Comment: 4 pages (includes 3 figures); postscript fil
Magnetic quantum critical point and superconductivity in UPt3 doped with Pd
Transverse-field muon spin relaxation measurements have been carried out on
the heavy-fermion superconductor UPt3 doped with small amounts of Pd. We find
that the critical Pd concentration for the emergence of the large-moment
antiferromagnetic phase is ~0.6 at.%Pd. At the same Pd content,
superconductivity is completely suppressed. The existence of a magnetic quantum
critical point in the phase diagram, which coincides with the critical point
for superconductivity, provides evidence for ferromagnetic spin-fluctuation
mediated odd-parity superconductivity, which competes with antiferromagnetic
order.Comment: 4 pages (includes 3 figures); postscript fil
Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation
We have studied by muon spin resonance ({\mu}SR) the helical ground state and
fluctuating chiral phase recently observed in the MnGe chiral magnet. At low
temperature, the muon polarization shows double period oscillations at short
time scales. Their analysis, akin to that recently developed for MnSi [A. Amato
et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field
distribution induced by the Mn helical order at the muon site. The refined muon
position agrees nicely with ab initio calculations. With increasing
temperature, an inhomogeneous fluctuating chiral phase sets in, characterized
by two well separated frequency ranges which coexist in the sample. Rapid and
slow fluctuations, respectively associated with short range and long range
ordered helices, coexist in a large temperature range below T = 170 K. We
discuss the results with respect to MnSi, taking the short helical period,
metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure
Moho-depth and subglacial sedimentary layer thickness in the Wilkes Basin from Receiver Function Analysis
Wilkes Basin lies to the east of the Transantarctic Mountains. The origin of this sub-glacial basin is still controversial. Flexural uplift of the Transantarctic Mountains has been suggested as the geophysical process which generated the basin (Stern & ien Brink, 1989). Other studies proposed a continental rift structure for this region (Ferraccioli et al., 2001). The two models differ mainly in the crustal structure predicted beneath the basin. In the former, crustal thickning is expected to be originated from the high rigidity of the East Antarctic Craton lithosphere. Otherwise, the rift structure hypothesis is consistent with a broad crustal thinning. During the WIBEM 2003 campaign, we deployed five broadband seismic stations across the basin. We selected high signal/noise teleseismic recording to compute a data-set of receiver functions. We applied a classical inversion scheme, the Neighbourhood Algorithm, to our data-set. Here, two different and complementary studies are presented. We constrain the Moho geometry beneath the Wilkes Basin from the analysis of low-frequency P-to-S conversion at the base of the crust. Also, we investigate the nature of the basin mapping the presence of subglacial sediments using the P-to-S conversion at the ice-bedrock interface
- …