2,092 research outputs found
Meson Exchange Currents in (e,e'p) recoil polarization observables
A study of the effects of meson-exchange currents and isobar configurations
in reactions is presented. We use a distorted wave
impulse approximation (DWIA) model where final-state interactions are treated
through a phenomenological optical potential. The model includes relativistic
corrections in the kinematics and in the electromagnetic one- and two-body
currents. The full set of polarized response functions is analyzed, as well as
the transferred polarization asymmetry. Results are presented for proton
knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the
dominance of OB over MEC, and a summary of differences with previous MEC
calculations. To be published in PR
Recommended from our members
Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry.
Atmospheric aerosols have long been known to alter climate by scattering incoming solar radiation and acting as seeds for cloud formation. These processes have vast implications for controlling the chemistry of our environment and the Earth's climate. Sea spray aerosol (SSA) is emitted over nearly three-quarters of our planet, yet precisely how SSA impacts Earth's radiation budget remains highly uncertain. Over the past several decades, studies have shown that SSA particles are far more complex than just sea salt. Ocean biological and physical processes produce individual SSA particles containing a diverse array of biological species including proteins, enzymes, bacteria, and viruses and a diverse array of organic compounds including fatty acids and sugars. Thus, a new frontier of research is emerging at the nexus of chemistry, biology, and atmospheric science. In this Outlook article, we discuss how current and future aerosol chemistry research demands a tight coupling between experimental (observational and laboratory studies) and computational (simulation-based) methods. This integration of approaches will enable the systematic interrogation of the complexity within individual SSA particles at a level that will enable prediction of the physicochemical properties of real-world SSA, ultimately illuminating the detailed mechanisms of how the constituents within individual SSA impact climate
The distribution of stars around the Milky Way's central black hole II: Diffuse light from sub-giants and dwarfs
This is the second of three papers that search for the predicted stellar cusp
around the Milky Way's central black hole, Sagittarius A*, with new data and
methods. We aim to infer the distribution of the faintest stellar population
currently accessible through observations around Sagittarius A*. We use
adaptive optics assisted high angular resolution images obtained with the NACO
instrument at the ESO VLT. Through optimised PSF fitting we remove the light
from all detected stars above a given magnitude limit. Subsequently we analyse
the remaining, diffuse light density. The analysed diffuse light arises from
sub-giant and main-sequence stars with KS ~ 19 - 20 with masses of 1 - 2 Msol .
These stars can be old enough to be dynamically relaxed. The observed power-law
profile and its slope are consistent with the existence of a relaxed stellar
cusp around the Milky Way's central black hole. We find that a Nuker law
provides an adequate description of the nuclear cluster's intrinsic shape
(assuming spherical symmetry). The 3D power-law slope near Sgr A* is \gamma =
1.23 +- 0.05. At a distance of 0.01 pc from the black hole, we estimate a
stellar mass density of 2.3 +- 0.3 x 10^7 Msol pc^-3 and a total enclosed
stellar mass of 180 +- 20 Msol. These estimates assume a constant mass-to-light
ratio and do not take stellar remnants into account. The fact that no cusp is
observed for bright (Ks 16) giant stars at projected distances of roughly
0.1-0.3 pc implies that some mechanism has altered their appearance or
distribution.Comment: Accepted for publication A&
The distribution of old stars around the Milky Way's central black hole I: Star counts
(abridged) In this paper we revisit the problem of inferring the innermost
structure of the Milky Way's nuclear star cluster via star counts, to clarify
whether it displays a core or a cusp around the central black hole. Through
image stacking and improved PSF fitting we push the completeness limit about
one magnitude deeper than in previous, comparable work. Contrary to previous
work, we analyse the stellar density in well-defined magnitude ranges in order
to be able to constrain stellar masses and ages. The RC and brighter giant
stars display a core-like surface density profile within a projected radius
R<0.3 pc of the central black hole, in agreement with previous studies, but
show a cusp-like surface density distribution at larger R. The surface density
of the fainter stars can be described well by a single power-law at R<2 pc. The
cusp-like profile of the faint stars persists even if we take into account the
possible contamination of stars in this brightness range by young pre-main
sequence stars. The data are inconsistent with a core-profile for the faint
stars.Finally, we show that a 3D Nuker law provides a very good description of
the cluster structure. We conclude that the observed stellar density at the
Galactic Centre, as it can be inferred with current instruments, is consistent
with the existence of a stellar cusp around the Milky Way's central black hole,
Sgr A*. This cusp is well developed inside the influence radius of about 3 pc
of Sgr A* and can be described by a single three-dimensional power-law with an
exponent gamma=1.23+-0.05. The apparent lack of RC stars and brighter giants at
projected distances of R < 0.3 pc (R<8") of the massive black hole may indicate
that some mechanism has altered their distribution or intrinsic luminosity.Comment: Accepted for publication A&
Effects of Short-Range Correlations in (e,e'p) reactions and nuclear overlap functions
A study of the effects of short-range correlations over the (e,e'p) reaction
for low missing energy in closed shell nuclei is presented. We use correlated,
quasi-hole overlap functions extracted from the asymptotic behavior of the
one-body density matrix, containing central correlations of Jastrow type, up to
first-order in a cluster expansion, and computed in the very high asymptotic
region, up to 100 fm. The method to extract the overlap functions is checked in
a simple shell model, where the exact results are known. We find that the
single-particle wave functions of the valence shells are shifted to the right
due to the short-range repulsion by the nuclear core. The corresponding
spectroscopic factors are reduced only a few percent with respect to the shell
model. However, the (e,e'p) response functions and cross sections are enhanced
in the region of the maximum of the missing momentum distribution due to
short-range correlations.Comment: 45 pages, 15 figure
Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response
Predictions for electron induced proton knockout from the and
shells in O are presented using various approximations for the
relativistic nucleonic current. Results for the differential cross section,
transverse-longitudinal response () and left-right asymmetry
are compared at (GeV/c) corresponding to TJNAF experiment
89-003. We show that there are important dynamical and kinematical relativistic
effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data
from the figure
Ground state correlations and mean-field in O: Part II
We continue the investigations of the O ground state using the
coupled-cluster expansion [] method with realistic nuclear
interaction. In this stage of the project, we take into account the three
nucleon interaction, and examine in some detail the definition of the internal
Hamiltonian, thus trying to correct for the center-of-mass motion. We show that
this may result in a better separation of the internal and center-of-mass
degrees of freedom in the many-body nuclear wave function. The resulting ground
state wave function is used to calculate the "theoretical" charge form factor
and charge density. Using the "theoretical" charge density, we generate the
charge form factor in the DWBA picture, which is then compared with the
available experimental data. The longitudinal response function in inclusive
electron scattering for O is also computed.Comment: 9 pages, 7 figure
Relativistic Effects in the Electromagnetic Current at GeV Energies
We employ a recent approach to the non-relativistic reduction of the
electromagnetic current operator in calculations of electronuclear reactions.
In contrast to the traditional scheme, where approximations are made for the
transferred momentum, transferred energy and initial momentum of the struck
nucleon in obtaining an on-shell inspired form for the current, we treat the
problem exactly for the transferred energy and transferred momentum. We
calculate response functions for the reaction at CEBAF (TJNAF)
energies and find large relativistic corrections. We also show that in Plane
Wave Impulse Approximation, it is always possible to use the full operator, and
we present a comparison of such a limiting case with the results incorporating
relativistic effects to the first order in the initial momentum of the struck
nucleon.Comment: 31 pages, 8 figures, Revte
Relativistic total cross section and angular distribution for Rayleigh scattering by atomic hydrogen
We study the total cross section and angular distribution in Rayleigh
scattering by hydrogen atom in the ground state, within the framework of Dirac
relativistic equation and second-order perturbation theory. The relativistic
states used for the calculations are obtained by making use of the finite basis
set method and expressed in terms of B-splines and B-polynomials. We pay
particular attention to the effects that arise from higher (non-dipole) terms
in the expansion of the electron-photon interaction. It is shown that the
angular distribution of scattered photons, while it is symmetric with respect
to the scattering angle =90 within the electric dipole
approximation, becomes asymmetric when higher multipoles are taken into
account. The analytical expression of the angular distribution is parametrized
in terms of Legendre polynomials. Detailed calculations are performed for
photons in the energy range 0.5 to 10 keV. When possible, results are compared
with previous calculations.Comment: 8 pages, 5 figure
- …