10 research outputs found

    Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease

    No full text
    Huntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by personality changes, motor impairment, and subcortical dementia. HD is one of a number of diseases caused by expression of an expanded polyglutamine repeat. We have developed several lines of mice that are transgenic for exon 1 of the HD gene containing an expanded CAG sequence. These mice exhibit a defined neurological phenotype along with neuronal changes that are pathognomonic for the disease. We have previously observed the appearance of neuronal intranuclear inclusions, but did not find evidence for neurodegeneration. In this study, we report that all lines of these mice develop a late onset neurodegeneration within the anterior cingulate cortex, dorsal striatum, and of the Purkinje neurons of the cerebellum. Dying neurons characteristically exhibit neuronal intranuclear inclusions, condensation of both the cytoplasm and nucleus, and ruffling of the plasma membrane while maintaining ultrastructural preservation of cellular organelles. These cells do not develop blebbing of the nucleus or cytoplasm, apoptotic bodies, or fragmentation of DNA. Neuronal death occurs over a period of weeks not hours. We also find degenerating cells of similar appearance within these same regions in brains of patients who had died with HD. We therefore suggest that the mechanism of neuronal cell death in both HD and a transgenic mouse model of HD is neither by apoptosis nor by necrosis

    Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation

    No full text
    Huntington's disease (HD) is an autosomal dominant progressive and fatal neurodegenerative brain disorder caused by an expanded CAG/polyglutamine repeat in the coding region of the gene. Presymptomatic Huntington's disease patients often exhibit cognitive deficits before the onset of classical symptoms. To investigate the possibility that changes in synaptic plasticity might underlie cognitive impairment in HD, we examined hippocampal synaptic plasticity and spatial cognition in a transgenic mouse (R6/2 line) expressing exon 1 of the human Huntington's disease gene containing an expanded CAG repeat. This mouse exhibits a progressive and fatal neurological phenotype that resembles Huntington's disease. We report that R6/2 mice show marked alterations in synaptic plasticity at both CA1 and dentate granule cell synapses, and impaired spatial cognitive performance in the Morris water maze. The changes in hippocampal plasticity were age dependent, appearing at CA1 synapses several weeks before they were observed in the dentate gyrus. Deficits in synaptic plasticity at CA1 synapses occurred before an overt phenotype. This suggests that altered synaptic plasticity contributes to the presymptomatic changes in cognition reported in human carriers of the Huntington' disease gene. The temporal and regional changes in synaptic plasticity within the hippocampus mirror the appearance of neuronal intranuclear inclusions, suggesting a relationship between polyglutamine aggregation and dysfunction.Peer reviewe

    From neuronal inclusions to neurodegeneration: neuropathological investigation of a transgenic mouse model of Huntington's disease

    No full text
    Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies

    Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease

    Get PDF
    Huntington's disease (HD) is an inherited, progressive neurological disorder that is caused by a CAG/polyglutamine repeat expansion and for which there is no effective therapy. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular pathogenesis of this disease. Supporting this view, administration of histone deacetylase (HDAC) inhibitors has been shown to rescue lethality and photoreceptor neurodegeneration in a Drosophila model of polyglutamine disease. To further explore the therapeutic potential of HDAC inhibitors, we have conducted preclinical trials with suberoylanilide hydroxamic acid (SAHA), a potent HDAC inhibitor, in the R6/2 HD mouse model. We show that SAHA crosses the blood–brain barrier and increases histone acetylation in the brain. We found that SAHA could be administered orally in drinking water when complexed with cyclodextrins. SAHA dramatically improved the motor impairment in R6/2 mice, clearly validating the pursuit of this class of compounds as HD therapeutics

    Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation.

    No full text
    Six inherited neurodegenerative diseases are caused by a CAG/polyglutamine expansion, including spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), spinocerebellar ataxia type 1 (SCA1), dentatorubral pallidoluysian atrophy (DRPLA) Machado-Joseph disease (MJD or SCA3) and SCA2. Normal and expanded HD allele sizes of 6-39 and 35-121 repeats have been reported, and the allele distributions for the other diseases are comparable. Intergenerational instability has been described in all cases, and repeats tend to be more unstable on paternal transmission. This may present as larger increases on paternal inheritance as in HD, or as a tendency to increase on male and decrease on female transmission as in SCA1 (ref. 15). Somatic repeat instability is also apparent and appears most pronounced in the CNS. The major exception is the cerebellum, which in HD, DRPLA, SCA1 and MJD has a smaller repeat relative to the other brain regions tested. Of non-CNS tissues, instability was observed in blood, liver, kidney and colon. A mouse model of CAG repeat instability would be helpful in unravelling its molecular basis although an absence of CAG repeat instability in transgenic mice has so far been reported. These studies include (CAG) in the androgen receptor cDNA, (CAG) in the HD cDNA, (CAG) in the SCA1 cDNA, (CAG) in the SCA3 cDNA and as an isolated (CAG) tract
    corecore