68 research outputs found

    Listeria monocytogenes : the silent assassin

    Get PDF
    Graphical abstract Listeria monocytogenes is ubiquitous in both plant and animal reservoirs. It can persist in food production environments due to its capacity to grow at refrigerated temperatures and its resistance to biocides. The source of most human infections is contaminated food. Healthy individuals present with mild gastrointestinal symptoms. However, in immunocompromised individuals the infection is more severe, causing bacteraemia, meningitis and, in pregnancy-associated listeriosis, miscarriage and stillbirth. In vulnerable groups, including the elderly, pregnant women and their infants, listeriosis has a 20–30% mortality rate

    Phylogenomic analysis of gastroenteritis-associated Clostridium perfringens in England and Wales over a 7-year period indicates distribution of clonal toxigenic strains in multiple outbreaks and extensive involvement of enterotoxin-encoding (CPE) plasmids

    Get PDF
    Clostridium perfringens is a major enteric pathogen known to cause gastroenteritis in human adults. Although major outbreak cases are frequently reported, only limited whole-genome sequencing (WGS) based studies have been performed to understand the genomic epidemiology and virulence gene content of outbreak-associated C. perfringens strains. We performed phylogenomic analysis on 109 C. perfringens isolates (human and food) obtained from disease cases in England and Wales between 2011 and 2017. Initial findings highlighted the enhanced discriminatory power of WGS in profiling outbreak C. perfringens strains, when compared to the current Public Health England referencing laboratory technique of fluorescent amplified fragment length polymorphism analysis. Further analysis identified that isogenic C. perfringens strains were associated with nine distinct care-home-associated outbreaks over the course of a 5-year interval, indicating a potential common source linked to these outbreaks or transmission over time and space. As expected, the enterotoxin cpe gene was encoded in all but 4 isolates (96.3 %; 105/109), with virulence plasmids encoding cpe (particularly pCPF5603 and pCPF4969 plasmids) extensively distributed (82.6 %; 90/109). Genes encoding accessory virulence factors, such as beta-2 toxin, were commonly detected (46.7 %; 51/109), and genes encoding phage proteins were also frequently identified. Overall, this large-scale genomic study of gastroenteritis-associated C. perfringens suggested that three major cpe-encoding (toxinotype F) genotypes underlie these outbreaks: strains carrying (1) pCPF5603 plasmid, (2) pCPF4969 plasmid and (3) chromosomal-cpe strains. Our findings substantially expanded our knowledge on type F C. perfringens involved in human-associated gastroenteritis, with further studies required to fully probe the dissemination and regional reservoirs of this enteric pathogen, which may help devise effective prevention strategies to reduce the food-poisoning disease burden in vulnerable patients, such as the elderly

    Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism.

    Get PDF
    Clostridium botulinum Group I and Clostridium sporogenes are closely related bacteria responsible for foodborne, infant and wound botulism. A comparative genomic study with 556 highly diverse strains of C. botulinum Group I and C. sporogenes (including 417 newly sequenced strains) has been carried out to characterise the genetic diversity and spread of these bacteria and their neurotoxin genes. Core genome single-nucleotide polymorphism (SNP) analysis revealed two major lineages; C. botulinum Group I (most strains possessed botulinum neurotoxin gene(s) of types A, B and/or F) and C. sporogenes (some strains possessed a type B botulinum neurotoxin gene). Both lineages contained strains responsible for foodborne, infant and wound botulism. A new C. sporogenes cluster was identified that included five strains with a gene encoding botulinum neurotoxin sub-type B1. There was significant evidence of horizontal transfer of botulinum neurotoxin genes between distantly related bacteria. Population structure/diversity have been characterised, and novel associations discovered between whole genome lineage, botulinum neurotoxin sub-type variant, epidemiological links to foodborne, infant and wound botulism, and geographic origin. The impact of genomic and physiological variability on the botulism risk has been assessed. The genome sequences are a valuable resource for future research (e.g., pathogen biology, evolution of C. botulinum and its neurotoxin genes, improved pathogen detection and discrimination), and support enhanced risk assessments and the prevention of botulism

    Closing gaps for performing a risk assessment on Listeria monocytogenes in ready-to-eat (RTE) foods : activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis

    Get PDF
    We would like to thank all the persons and institutes that have provided the project with isolates and accompanying information. Without them, this project would not have been possible. Lin Cathrine T. Brandal, Norwegian Institute of Public Health, Norway Julio Vázquez Moreno and Raquel Abad Torreblanca, Instituto de Salud Carlos III, Spain Marc Lecuit, Institut Pasteur, France Alexandre Leclercq, Institut Pasteur, France Iva Hristova, National Center of Infectious and Parasitic Diseases, Bulgaria Marija Trkov, National Laboratory of Health, Environment and Food, Slovenia Cecilia Jernberg, Public Health Agency of Sweden, Sweden Ariane Pietzka, Austrian Agency for Health and Food Safety, Austria Eelco Franz and Ingrid Friesema, RIVM, The Netherlands Carlo Spanu, University of Sassari Sardinia Ifip, French Institute for Pig and Pork Industry, Maisons-Alfort, France All the NRLs for providing the isolates from the EU baseline study Special thanks to Sylvain Brisse and Alexandra Moura, Institut Pasteur, France, for providing cgMLST data. The authors would also like to thank the EFSA staff members: Maria Teresa da Silva Felicio, Beatriz Guerra, Ernesto Lìebana and Valentina Rizzi as well as the members of the Working Group on Listeria monocytogenes contamination of ready-to-eat foods: Kostas Koutsoumanis, Roland Lindqvist, Moez Sanaa, Panagiotis Skandamis, Niko Speybroek, Johanna Takkinen and Martin Wagner for the support, revisions and suggestions during the development of the present procurement activity and report.Publisher PD

    LiSEQ – whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe

    Get PDF
    Funding information This work was funded by EFSA, contract number C/EFSA/BIOCONTAM/2014/01-CT 1 on “Closing gaps for performing a risk assessment on Listeria monocytogenes in ready-to-eat (RTE) foods: activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis’, EFSA-Q-2014-00 026. Acknowledgements A. P., T. D. and K. G. are affiliated to the National Institute for Health Research – Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at University of Liverpool in partnership with Public Health England, in collaboration with the University of East Anglia, the University of Oxford and the Quadram Institute. A. P., T. D. and K. G. are based at Public Health England. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England.Peer reviewedPublisher PD

    A pragmatic harm reduction approach to manage a large outbreak of wound botulism in people who inject drugs, Scotland 2015

    Get PDF
    Abstract Background People who inject drugs (PWID) are at an increased risk of wound botulism, a potentially fatal acute paralytic illness. During the first 6 months of 2015, a large outbreak of wound botulism was confirmed among PWID in Scotland, which resulted in the largest outbreak in Europe to date. Methods A multidisciplinary Incident Management Team (IMT) was convened to conduct an outbreak investigation, which consisted of enhanced surveillance of cases in order to characterise risk factors and identify potential sources of infection. Results Between the 24th of December 2014 and the 30th of May 2015, a total of 40 cases were reported across six regions in Scotland. The majority of the cases were male, over 30 and residents in Glasgow. All epidemiological evidence suggested a contaminated batch of heroin or cutting agent as the source of the outbreak. There are significant challenges associated with managing an outbreak among PWID, given their vulnerability and complex addiction needs. Thus, a pragmatic harm reduction approach was adopted which focused on reducing the risk of infection for those who continued to inject and limited consequences for those who got infected. Conclusions The management of this outbreak highlighted the importance and need for pragmatic harm reduction interventions which support the addiction needs of PWID during an outbreak of spore-forming bacteria. Given the scale of this outbreak, the experimental learning gained during this and similar outbreaks involving spore-forming bacteria in the UK was collated into national guidance to improve the management and investigation of future outbreaks among PWID

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino de tector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower-or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches
    corecore