10 research outputs found

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil : characterization and in-vitro cytotoxicity

    No full text
    The potential of almond gum and gelatin complex coacervates as a colloidal carrier for rosemary essential oil (REO) was investigated along with in vitro gastrointestinal release and cytotoxicity. The optimum formulation (1 gelatin:2 almond gum and 7% (w/w) REO) was selected based on encapsulation efficiency (43.6%) and encapsulation yield (99.3%). The particle size was 6.9 mu m with a high negative zeta-potential (-37.3 mV). FTIR and XRD data revealed that REO was properly loaded within carriers and there were interactions between gelatin and almond gum. Thermal stability of REO was enhanced after complex coacervation according to TGA. REO released slowly from carriers under simulated gastrointestinal fluid. Cytotoxicity of pure REO and REO-loaded complexes was evaluated on 4 T1 cell lines. Encapsulation of REO caused a reduction in toxicity. Overall, coacervates of gelatin-almond gum could be a promising carrier to enhance the application of bioactives in the food and drug industry with low toxicity

    A Novel Hybrid Approach Based on BAT Algorithm with Artificial Neural Network to Forecast Iran’s Oil Consumption

    No full text
    In this paper, we develop a function of population, GDP, import, and export by applying a hybrid bat algorithm (BAT) and artificial neural network (ANN). We apply these methods to forecast oil consumption in Iran. For this purpose, an improved artificial neural network (ANN) structure, which is optimized by the BAT is proposed. The variables between 1980 and 2017 were used, partly for installing and testing the method. This method would be helpful in forecasting oil consumption and would provide a level playing field for checking the energy policy authority impacts on the structure of the energy sector in an economy such as Iran with high economic interventionism by the government. The result of the model shows that the findings are in close agreement with the observed data, and the performance of the method was excellent. We demonstrate that its efficiency could be a helpful and reliable tool for monitoring oil consumption

    TWO-YEAR INCIDENCE OF ACUTE FATAL AND NON-FATAL CORONARY ACCIDENT AND STROKE IN THE OVER-35 POPULATION IN CENTRAL IRAN

    No full text
    ABSTRACT Introduction: Cardiovascular diseases and stroke constitute an important cause of death in most developed and undeveloped countries. Identification of the principal risk factors of coronary accidents and stroke and understanding of the relative risk posed by each of these risk factors are crucial to control and reduction of risk factors. Methods: 6542 individuals aged over 35 years from the cities of Isfahan, Arak and Najafabad were studied and followed for two years. The individuals were chosen from among the population of 12800 people, selected in several stages to participate in Isfahan Healthy Heart Program (IHHP). Pregnant women, mentally retarded individuals, and those with hemorrhagic diseases were excluded from the study. Risk factors were extracted based on definition using SPSS11 software, and the degree of risk posed by each risk factor was determined. Results: The incidence of acute coronary accidents was studied in 3970 (60.7%) healthy individuals participating in IHHP, who were followed over a period of two years. 60 deaths (1.5% of the population) occurred during the two years, 1% of which were caused by myocardial infarction (MI). There were 115 instances of fatal and non-fatal cardiac accidents (2.9% of the population). Strokes were seen in half of the cases. A positive history of smoking was accompanied by reduced survival of subjects in this study. The incidence of non-fatal cardiac accidents also increased with diastolic hypertension and triglyceride level. In this study, the greatest risk of cardiac accidents was associated with hypertension, diabetes, metabolic syndrome, and positive history of smoking. Discussion: In this study, the two-year incidence of cardiac accidents was higher than that of Ewopean countris. The relative risk of risk factors such as diabetes, positive history of smoking, and hypertension was also notably higher than that of similar studies. In light of the higher risk of cardiac accidents compared with similar studies, preparing a risk chart based on geographical and cultural features for evaluation of the risk of cardiac accidents seems imperative. &nbsp; Key Words: Risk chart, Fatal cardiac accidents, Non-fatal cardiac accidents, stroke, Cardiovascular risk factors, Iran &nbsp;</p

    A novel hybrid method based on Cuckoo optimization algorithm and artificial neural network to forecast world’s carbon dioxide emission

    No full text
    This paper deals with the global energy consumption to forecast future projections based on primary energy, global oil, coal and natural gas consumption using a hybrid Cuckoo optimization algorithm and information of British Petroleum Company plc and BP Amoco plc. The Artificial Neural Network (ANN) has some significant disadvantages, such as training slowly, easiness to fall into local optimal point, and sensitivity of the initial weights and bias. To overcome the shortcomings, an improved ANN structure, that is optimized by the Cuckoo Optimization Algorithm (COA), is proposed in this paper (COANN). The performance of the COANN is evaluated with Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (CC) between the output of the model and the actual dataset. Finally, CO2 emission in the world by 2050 is forecasted using COANN. The findings showed that COANN is a helpful and reliable tool for monitoring global warming. This proposed method will assist experts, policy planners and researchers who study greenhouse gases. • The method can be used as a potential tool for policymakers and governments to make policy on global warming monitoring and control. • The proposed method can play a key role in the global climate changes policies and can have a significant impact on the efficiency or inefficiency of government's intervention policies

    A novel hybrid method based on Cuckoo optimization algorithm and artificial neural network to forecast world’s carbon dioxide emission

    Get PDF
    This paper deals with the global energy consumption to forecast future projections based on primary energy, global oil, coal and natural gas consumption using a hybrid Cuckoo optimization algorithm and information of British Petroleum Company plc and BP Amoco plc. The Artificial Neural Network (ANN) has some significant disadvantages, such as training slowly, easiness to fall into local optimal point, and sensitivity of the initial weights and bias. To overcome the shortcomings, an improved ANN structure, that is optimized by the Cuckoo Optimization Algorithm (COA), is proposed in this paper (COANN). The performance of the COANN is evaluated with Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (CC) between the output of the model and the actual dataset. Finally, CO2 emission in the world by 2050 is forecasted using COANN. The findings showed that COANN is a helpful and reliable tool for monitoring global warming. This proposed method will assist experts, policy planners and researchers who study greenhouse gases. • The method can be used as a potential tool for policymakers and governments to make policy on global warming monitoring and control. • The proposed method can play a key role in the global climate changes policies and can have a significant impact on the efficiency or inefficiency of government's intervention policies

    A novel hybrid method based on Cuckoo optimization algorithm and artificial neural network to forecast world's carbon dioxide emission

    Get PDF
    This paper deals with the global energy consumption to forecast future projections based on primary energy, global oil, coal and natural gas consumption using a hybrid Cuckoo optimization algorithm and information of British Petroleum Company plc and BP Amoco plc. The Artificial Neural Network (ANN) has some significant disadvantages, such as training slowly, easiness to fall into local optimal point, and sensitivity of the initial weights and bias. To overcome the shortcomings, an improved ANN structure, that is optimized by the Cuckoo Optimization Algorithm (COA), is proposed in this paper (COANN). The performance of the COANN is evaluated with Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (CC) between the output of the model and the actual dataset. Finally, CO(2) • The method can be used as a potential tool for policymakers and governments to make policy on global warming monitoring and control. • The proposed method can play a key role in the global climate changes policies and can have a significant impact on the efficiency or inefficiency of government's intervention policies

    Poster presentations.

    No full text

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore