143 research outputs found

    Using Blogs to Teach Strategies for Inquiry into the Construction of Lived and Text Worlds

    Get PDF
    This paper describes a teacher-researcher collaboration aimed at teaching students strategies for inquiry into the constructed nature of lived and text worlds – a pedagogical objective consistent with goals of media literacy. As an introduction to these strategies, students were asked to engage in a commonly used media literacy tool – a blog – to explore the socially and culturally constructed aspects of their own lived worlds. As students blogged, they were also asked to examine the represented worlds in a literary text – To Kill a Mockingbird (Lee 1960). Research discussed in this paper examines the specific affordances of blogs for helping students acquire these new strategies for critical inquiry

    Green Street SRB: Fifth Year Impact Evaluation

    Get PDF
    This report reviews the progress of the Green Street Single Regeneration Budget (SRB) programme, which started in 1995, and was now nearing completion in its fifth year at time of writing. As detailed in the initial bid, the Green Street SRB Programme aimed to tackle a number of key social, economic and physical problems within the area through the development of sixteen projects. The area covered, spans 6 wards within the London Borough of Newham and encompasses a population of 22,500, 65% of whom are from ethnic minority communities. The report concludes that Green Street is a thriving shopping area with an improved variety of shops and restaurants, particularly for minority ethnic communities. The initiatives to address unemployment, environmental and crime problems have been less successful. High unemployment also remains a problem, although some of the benefits of the projects may only be realised in the longer term

    Chromosome-Level Genome Assembly for the Angiosperm Silene conica.

    Get PDF
    The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on Pacific Bioscience HiFi, Hi-C, and Bionano technologies. The assembly produced 10 scaffolds (1 per chromosome) with a total length of 862 Mb and only ∼1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus\u27s ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (\u3e11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes

    Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity

    Get PDF
    The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.publishedVersio

    Rewiring of Aminoacyl-tRNA Synthetase Localization and Interactions in Plants With Extensive Mitochondrial tRNA Gene Loss

    Get PDF
    The number of tRNAs encoded in plant mitochondrial genomes varies considerably. Ongoing loss of bacterial-like mitochondrial tRNA genes in many lineages necessitates the import of nuclear-encoded counterparts that share little sequence similarity. Because tRNAs are involved in highly specific molecular interactions, this replacement process raises questions about the identity and trafficking of enzymes necessary for the maturation and function of newly imported tRNAs. In particular, the aminoacyl-tRNA synthetases (aaRSs) that charge tRNAs are usually divided into distinct classes that specialize on either organellar (mitochondrial and plastid) or nuclear-encoded (cytosolic) tRNAs. Here, we investigate the evolution of aaRS subcellular localization in a plant lineage (Sileneae) that has experienced extensive and rapid mitochondrial tRNA loss. By analyzing full-length mRNA transcripts (PacBio Iso-Seq), we found predicted retargeting of many ancestrally cytosolic aaRSs to the mitochondrion and confirmed these results with colocalization microscopy assays. However, we also found cases where aaRS localization does not appear to change despite functional tRNA replacement, suggesting evolution of novel interactions and charging relationships. Therefore, the history of repeated tRNA replacement in Sileneae mitochondria reveals that differing constraints on tRNA/aaRS interactions may determine which of these alternative coevolutionary paths is used to maintain organellar translation in plant cells

    Brain Cells in the Avian ‘Prefrontal Cortex’ Code for Features of Slot-Machine-Like Gambling

    Get PDF
    Slot machines are the most common and addictive form of gambling. In the current study, we recorded from single neurons in the ‘prefrontal cortex’ of pigeons while they played a slot-machine-like task. We identified four categories of neurons that coded for different aspects of our slot-machine-like task. Reward-Proximity neurons showed a linear increase in activity as the opportunity for a reward drew near. I-Won neurons fired only when the fourth stimulus of a winning (four-of-a-kind) combination was displayed. I-Lost neurons changed their firing rate at the presentation of the first nonidentical stimulus, that is, when it was apparent that no reward was forthcoming. Finally, Near-Miss neurons also changed their activity the moment it was recognized that a reward was no longer available, but more importantly, the activity level was related to whether the trial contained one, two, or three identical stimuli prior to the display of the nonidentical stimulus. These findings not only add to recent neurophysiological research employing simulated gambling paradigms, but also add to research addressing the functional correspondence between the avian NCL and primate PFC

    Making Summer Count: How Summer Programs Can Boost Children's Learning

    Get PDF
    Examines evidence that summer programs can help counter the "summer slide" that disproportionately affects low-income students and contributes to the achievement gap; identifies obstacles to program provision; analyzes costs; and offers recommendations

    An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury.

    Get PDF
    BACKGROUND The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood. METHODS We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways. RESULTS Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a. CONCLUSIONS We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration
    • …
    corecore