31 research outputs found

    The impact of spectrally asynchronous delay on the intelligibility of conversational speech

    Get PDF
    Conversationally spoken speech is rampant with rapidly changing and complex acoustic cues that individuals are able to hear, process, and encode to meaning. For many hearing-impaired listeners, a hearing aid is necessary to hear these spectral and temporal acoustic cues of speech. For listeners with mild-moderate high frequency sensorineural hearing loss, open-fit digital signal processing (DSP) hearing aids are the most common amplification option. Open-fit DSP hearing aids introduce a spectrally asynchronous delay to the acoustic signal by allowing audible low frequency information to pass to the eardrum unimpeded while the aid delivers amplified high frequency sounds to the eardrum that has a delayed onset relative to the natural pathway of sound. These spectrally asynchronous delays may disrupt the natural acoustic pattern of speech. The primary goal of this study is to measure the effect of spectrally asynchronous delay on the intelligibility of conversational speech by normal-hearing and hearing-impaired listeners. A group of normal-hearing listeners (n = 25) and listeners with mild-moderate high frequency sensorineural hearing loss (n = 25) participated in this study. The acoustic stimuli included 200 conversationally-spoken recordings of the low predictability sentences from the revised speech perception in noise test (r-SPIN). These 200 sentences were modified to control for audibility for the hearing-impaired group and so that the acoustic energy above 2 kHz was delayed by either 0 ms (control), 4ms, 8ms, or 32 ms relative to the low frequency energy. The data were analyzed in order to find the effect of each of the four delay conditions on the intelligibility of the final key word of each sentence. Normal-hearing listeners were minimally affected by the asynchronous delay. However, the hearing-impaired listeners were deleteriously affected by increasing amounts of spectrally asynchronous delay. Although the hearing-impaired listeners performed well overall in their perception of conversationally spoken speech in quiet, the intelligibility of conversationally spoken sentences significantly decreased when the delay values were equal to or greater than 4 ms. Therefore, hearing aid manufacturers need to restrict the amount of delay introduced by DSP so that it does not distort the acoustic patterns of conversational speech

    Genetic influences on hypoxic conditioning

    Get PDF
    This paper addresses the relationship between noise-induced hearing loss (NIHL) and hypoxic conditioning prior to noise exposure. The study begins the process of determining the number and characteristic of the gene(s) involved in the cochlear hypoxic conditioning response

    Effects of signal intensity level and noise-simulated hearing loss on auditory language processing persons with aphasia

    Get PDF
    This study assessed the role of presentation level and high-frequency audibility in auditory processing of participants with aphasia (PWA). Performance of PWA was compared to non-brain-injured participants (NBIP) on the Computerized Revised Token Test (C-RTT) at varying signal intensity levels, and under normal and simulated hearing loss conditions. The PWA performed significantly more poorly than the NBIP under both conditions. Maximum performance required significantly higher presentation levels in the simulated hearing loss condition than in quiet; with similar gain and level requirements were observed for both groups. The results will be discussed relative to auditory language processing in PWA

    Electrocochleography and cognition are important predictors of speech perception outcomes in noise for cochlear implant recipients

    Get PDF
    Although significant progress has been made in understanding outcomes following cochlear implantation, predicting performance remains a challenge. Duration of hearing loss, age at implantation, and electrode positioning within the cochlea together explain ~ 25% of the variability in speech-perception scores in quiet using the cochlear implant (CI). Electrocochleography (ECochG) responses, prior to implantation, account for 47% of the variance in the same speech-perception measures. No study to date has explored CI performance in noise, a more realistic measure of natural listening. This study aimed to (1) validate ECochG total response (ECochG-TR) as a predictor of performance in quiet and (2) evaluate whether ECochG-TR explained variability in noise performance. Thirty-five adult CI recipients were enrolled with outcomes assessed at 3-months post-implantation. The results confirm previous studies showing a strong correlation of ECochG-TR with speech-perception in quiet (r = 0.77). ECochG-TR independently explained 34% of the variability in noise performance. Multivariate modeling using ECochG-TR and Montreal Cognitive Assessment (MoCA) scores explained 60% of the variability in speech-perception in noise. Thus, ECochG-TR, a measure of the cochlear substrate prior to implantation, is necessary but not sufficient for explaining performance in noise. Rather, a cognitive measure is also needed to improve prediction of noise performance

    Is characteristic frequency limiting real-time electrocochleography during cochlear implantation?

    Get PDF
    Objectives: Electrocochleography (ECochG) recordings during cochlear implantation have shown promise in estimating the impact on residual hearing. The purpose of the study was (1) to determine whether a 250-Hz stimulus is superior to 500-Hz in detecting residual hearing decrement and if so; (2) to evaluate whether crossing the 500-Hz tonotopic, characteristic frequency (CF) place partly explains the problems experienced using 500-Hz. Design: Multifrequency ECochG comprising an alternating, interleaved acoustic complex of 250- and 500-Hz stimuli was used to elicit cochlear microphonics (CMs) during insertion. The largest ECochG drops (≥30% reduction in CM) were identified. After insertion, ECochG responses were measured using the individual electrodes along the array for both 250- and 500-Hz stimuli. Univariate regression was used to predict whether 250- or 500-Hz CM drops explained low-frequency pure tone average (LFPTA; 125-, 250-, and 500-Hz) shift at 1-month post-activation. Postoperative CT scans were performed to evaluate cochlear size and angular insertion depth. Results: For perimodiolar insertions ( Conclusion: Using 250-Hz stimulus for ECochG feedback during implantation is more predictive of hearing preservation than 500-Hz. This is due to the electrode passing the 500-Hz CF during insertion which may be misidentified as intracochlear trauma; this is particularly important in subjects with smaller cochlear diameters and deeper insertions. Multifrequency ECochG can be used to differentiate between trauma and advancement of the apical electrode beyond the CF

    The Computerized Revised Token Test: Assessing the Impact of Age and Sound Intensity

    Get PDF
    The Revised Token Test (McNeil & Prescott, 1978, RTT) is a well-established test of auditory language processing disorders in persons with aphasia. A computerized version of the test, the Computerized Revised Token Test (C-RTT), was developed recently in our laboratory to better control stimuli presentation, and eliminate variability associated with the complex scoring requirements of the RTT. In the current study the impact of participant age and acoustic signal intensity on performance of non-brain injured adults on the C-RTT was assessed. Although age effects have not observed with the RTT, we believed that strict adherence to timing and stimuli characteristics allowed by computer administration and scoring could separate young from older adults

    Annotated Bibliography of Research in the Teaching of English

    Get PDF
    Since 2003, RTE has published the annual “Annotated Bibliography of Research in the Teaching of English,” and we are proud to share these curated and annotated citations once again. The goal of the annual bibliography is to offer a synthesis of the research published in the area of English language arts within the past year that may be of interest to RTE readers. Abstracted citations and those featured in the “Other Related Research” sections were published, either in print or online, between June 2019 and June 2020. The bibliography is divided into nine subject area sections. A three-person team of scholars with diverse research interests and background experiences in preK–16 educational settings reviewed and selected the manuscripts for each section using library databases and leading empirical journals. Each team abstracted significant contributions to the body of peer-reviewed studies that addressed the current research questions and concerns in their topic area

    Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains

    Get PDF
    When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology
    corecore