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Conversationally spoken speech is rampant with rapidly changing and complex acoustic 

cues that individuals are able to hear, process, and encode to meaning. For many hearing-

impaired listeners, a hearing aid is necessary to hear these spectral and temporal acoustic cues of 

speech. For listeners with mild-moderate high frequency sensorineural hearing loss, open-fit 

digital signal processing (DSP) hearing aids are the most common amplification option. Open-fit 

DSP hearing aids introduce a spectrally asynchronous delay to the acoustic signal by allowing 

audible low frequency information to pass to the eardrum unimpeded while the aid delivers 

amplified high frequency sounds to the eardrum that has a delayed onset relative to the natural 

pathway of sound. These spectrally asynchronous delays may disrupt the natural acoustic pattern 

of speech. The primary goal of this study is to measure the effect of spectrally asynchronous 

delay on the intelligibility of conversational speech by normal-hearing and hearing-impaired 

listeners.  

A group of normal-hearing listeners (n = 25) and listeners with mild-moderate high 

frequency sensorineural hearing loss (n = 25) participated in this study. The acoustic stimuli 

included 200 conversationally-spoken recordings of the low predictability sentences from the 

revised speech perception in noise test (r-SPIN). These 200 sentences were modified to control 

for audibility for the hearing-impaired group and so that the acoustic energy above 2 kHz was 

delayed by either 0 ms (control), 4ms, 8ms, or 32 ms relative to the low frequency energy. The 
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data were analyzed in order to find the effect of each of the four delay conditions on the 

intelligibility of the final key word of each sentence.  

Normal-hearing listeners were minimally affected by the asynchronous delay. However, 

the hearing-impaired listeners were deleteriously affected by increasing amounts of spectrally 

asynchronous delay. Although the hearing-impaired listeners performed well overall in their 

perception of conversationally spoken speech in quiet, the intelligibility of conversationally 

spoken sentences significantly decreased when the delay values were equal to or greater than 4 

ms. Therefore, hearing aid manufacturers need to restrict the amount of delay introduced by DSP 

so that it does not distort the acoustic patterns of conversational speech.  
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1.0  INTRODUCTION & SUMMARY 

Speech perception is defined as the auditory perception of phonemic spectral and temporal 

patterns, and the mapping of these acoustic properties to linguistic units. Although the perception 

of speech seems to be an effortless task for individuals with normal hearing, it is no small feat. 

The human auditory system is an extraordinary sensory network that is able to perceive sounds 

ranging from 0 dB SPL to a sound pressure level that is 10 million times greater (140 dB SPL), 

and frequencies ranging from 20 Hz to 20,000 Hz. This is an enormous range of acoustic inputs 

received by the cochlea, the auditory sensory end organ measuring only 34-36 mm in length. In 

addition to the broad range of sensitivity in the auditory system, humans also have the ability to 

hear numerous sounds in their surrounding environment, whether it is the conversational chatter 

from neighboring tables at a restaurant or the engine roar of a subway transportation system, and 

still attend to the conversation at hand. In a matter of milliseconds, the auditory system is able to 

detect the spectral and temporal properties of speech, despite a wide variety of adverse acoustic 

environments, and translate these into a meaningful linguistic message. 

The perceptual properties of the human auditory system are astoundingly fine-tuned in 

three dimensions: intensity, frequency, and time. Normal-hearing listeners can discriminate 

intensity differences of at least 0.5 to 1 dB, pure tone frequency differences of at least 3 Hz (can 

be less than 1 Hz for complex tones), and temporal gaps of 2-3 ms (Gelfand, 1998). The acoustic 

properties of speech are defined along the same three dimensions of intensity, frequency, and 
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time. Speech contains patterns or cues in each of these three areas, making it an acoustically 

redundant signal. There have been numerous research studies exploring how normal-hearing 

listeners use each of these cues in speech recognition. As more is understood about the complex 

mapping of acoustic cues to phonemes and lexemes in the normal-functioning auditory system, 

then researchers can qualify and quantify the distortions of the neural network in impaired 

auditory systems.    

For hearing-impaired listeners, the distortions of the neural map between acoustical 

properties and lexemes begin peripherally with reduced access to the amplitude, spectral, and 

temporal cues in the speech signal. Loss of audibility accounts for most but not all of the 

deterioration in speech recognition performance for some listeners with hearing loss (Dubno, 

Dirks, & Ellison, 1989; Hogan & Turner, 1998). In addition to loss of sensitivity, hearing-

impaired listeners have loss of frequency resolution (Moore & Glasberg, 1986). Restoration of 

audibility can be achieved with amplification devices, but the cochlear spectral distortion is not 

ameliorated. The goal of an auditory rehabilitation program using amplification is to restore 

perceptual performance of hearing-impaired listeners to that of normal-hearing listeners by 

enhancing the acoustic cues of the speech spectrum. Current hearing aid technology uses digital 

signal processing (DSP) to apply gain, compression, and noise reduction algorithms to the 

incoming acoustic signal. As a result of the frequency dependent amplitude compression as well 

as the underlying DSP, the speech spectrum is spectrally and temporally distorted before it is 

further distorted by the damaged cochlea.  

DSP is the core of every amplification device on the market today. While DSP enables 

the device to perform many complex algorithms on the incoming acoustic signal that purportedly 

increase the speech recognition performance of hearing-impaired listeners, it introduces a delay 
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to the signal. The delay caused by DSP, or digital delay, is defined as the amount of time 

necessary for an acoustic signal to pass through the microphone, DSP circuit, and the receiver of 

the hearing assistive device. Spectrally asynchronous delays are delay values that vary as a 

function of frequency bands within the speech spectrum, meaning that the arrival time at the ear 

drum of one group of frequencies is delayed relative to another group of frequencies (e.g., low 

frequencies are delayed more than the high frequencies). These delays disrupt the speech’s 

spectral and temporal acoustic patterns that potentially serve as cues for phonemic recognition.  

Currently, researchers have been asking the question of whether the spectral and temporal 

distortions introduced by digital hearing aids and their processing schemes have a deleterious 

effect on the speech perception abilities of hearing-impaired listeners. Before this question can 

be addressed, a foundation must be laid. First, the literature on perceptual abilities of normal-

hearing listeners were explored not only to glean the various acoustical properties of speech that 

serve as cues to speech perception, but also to gain insight into the various theories behind the 

perception and translation of these acoustic cues into linguistic units. Secondly, the speech 

perception abilities and the use of these acoustical cues by hearing-impaired listeners with mild-

moderate sensorineural hearing loss were summarized, and the deviations from normal 

perceptual performance were quantified. As speech is spoken in a conversational manner outside 

speech perception laboratories and is the target of amplification by hearing aids, a section was 

devoted to the acoustic characteristics of conversational speech. Then, the spectro-temporal 

distortions of the speech spectrum caused by the DSP implemented in modern hearing aids were 

discussed. Lastly, the literature on the consequences of such distortions on the speech perception 

of hearing-impaired listeners was reviewed.  



 4 

The literature review led to the following empirical question: does the introduction of 

spectrally asynchronous delay that is similar to the delay introduced by open-fit digital hearing 

aids lead to poorer speech intelligibility of conversationally spoken speech by mild-moderate 

hearing-impaired listeners? This question led to the construction of conversationally spoken 

recordings of the revised Speech Perception in Noise (r-SPIN) test (Bilger, Neutzel, Rabinowitz, 

& Rzeczkowski, 1984) low predictability sentences. These stimuli were chosen because they 

forced the listener to rely on acoustic cues for speech perception rather than sentence context. 

The new recordings of the r-SPIN sentences were found to carry all of the trademarks of 

conversational speech such as faster articulation rate and shorter durations for both vowels and 

and voice onset time of word-initial consonants, yet were highly intelligible to a group of 15 

normal-hearing listeners.  

Next, the conversational recordings of the r-SPIN sentences were modified so that the 

stimuli represented what a hearing-impaired listener hears at the output of an open fit hearing 

aid. Each sentence was filtered so that the onset of acoustic energy above 2 kHz was delayed 

relative to the original onset of the sentence. This modified stimulus represented the combination 

of the natural pathway of sound into the ear canal, and the delayed high frequency energy from 

the output of the digital hearing aid. For hearing-impaired listeners, this delayed high frequency 

information was amplified in accordance with the listeners hearing loss. A group of normal-

hearing and hearing-impaired listeners listened to and repeated the processed stimuli presented 

randomly from four spectrally asynchronous delayed conditions: 0 ms delay (served as a control 

condition), 4 ms, 8 ms, and 32 ms. The intelligibility of the final key-word of each sentence was 

scored for each listener. The data were then averaged for each group and each delayed condition.  
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The group of normal-hearing listeners was minimally affected by the introduction of 

spectrally asynchronous delay of energy above 2 kHz. In fact delays of 32 ms did not 

significantly alter normal-hearing listeners’ intelligibility performance. Hearing-impaired 

listeners were negatively affected by the introduction of spectrally asynchronous delays in that 

their performance on the identification of the final key-word was significantly poorer with 

introduction of a delay as short as 4 ms when compared to the control condition (0 ms delay). 

However, this degradation in performance was very slight showing that hearing-impaired 

listeners might be fairly tolerant of short spectrally asynchronous delays. However, hearing-

impaired listeners were not as tolerant of the 32 ms delay condition, showing that these listeners 

may rely more heavily on the spectro-temporal cues for speech perception than the normal 

hearing listeners who were not affected at all by the 32 ms condition. Therefore, hearing aid 

manufacturers should be conscious of their devices signal processing speed.  
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2.0  BACKGROUND 

2.1 SPEECH PERCEPTION BY NORMALLY-HEARING LISTENERS 

 Acoustic Cues 2.1.1

Speech is a complex and rapid-changing code containing acoustic cues structured by the 

articulatory and aerodynamic mechanisms of speech production. Humans’ ability to understand 

conversation in adverse conditions that degrade the speech signal proves that audibility of the 

entire speech spectrum is not necessary for speech understanding. It is important to ask, “What 

acoustic properties of speech are most critical to speech recognition?” Over the past 60 years, 

researchers have been manipulating the spectrum of both natural speech and synthetic speech in 

order to answer this very question. As a result, there is an abundance of literature regarding the 

cues in the acoustic pattern of speech that listeners use to perceive phonemes.  

Spectrograms (Figure 2-1) display the pattern of speech acoustics along three 

dimensions: time along the abscissa, frequency along the ordinate, and intensity represented by 

the darkness or boldness of the bands found within the spectrum. Cues to aid speech perception 

result from the variance of each dimension with respect to another. These cues are classified as 

spectral, intensity, temporal, spectro-intensity, tempo-intensity, and spectro-temporal cues. For 

spectral, intensity and temporal cues, a single acoustic property provides a pattern resulting in 
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phoneme recognition, while the two remaining domains are held constant (i.e., in spectral cues 

the frequency patterns serve as cues while intensity and time are held constant). While spectro-

intensity, tempo-intensity, and spectro-amplitude cues are defined as dynamic patterns that 

emerge when one acoustic property varies as a function of another property. For example, an 

acoustic pattern generated by frequency varying as a function of time is a spectro-temporal cue. 

Table 2-1 contains an acoustic cue matrix showing the variation of the cues for phonemic 

perception along the acoustic dimensions. 

 

Table 2-1: Acoustic Cue Matrix 

 

 

 Spectral Intensity Temporal 

Spectral  • Vowel perception (formant 
spacing) 

 
• Fricative perception (spectral 

shape of noise) 
 
• Plosive perception 
        (spectral shape of burst) 
 

• Plosive perception 
(Burst intensity & 
consonant-vowel 
amplitude ratio) 

• Consonant perception (formant 
transitions—slope and duration) 

 
• Voicing perception  
         (VOT, TOT, EOA) 

Intensity  • Voicing perception in 
consonants (F0) 

 
• Perception of nasals 

(weaker intensity) 

• Manner of production 
 
• Voicing perception in consonants  

(amplitude envelope) 
 

Temporal   • Voicing perception in final-position 
consonants (vowel duration) 

 
• Fricative perception (duration of 

noise) 
 
• Manner of production (periodicity) 
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Figure 2-1: Spectrogram of the CV syllable /da/. Frequency is represented on the y axis, while time is
 
represented on the x-axis. Intensity is shown by the darkness of the bars within the spectrogram. 

 

 

 

 Spectral Cues 2.1.2

Spectral cues result from the resonances (formants) of the vocal tract during speech 

production. When voicing is present, the spectral cues aid vowel recognition. Vowel perception 

is dependent on the spectral pattern or spacing of the vowel formats. Delattre and his colleagues 

(1952) at the Haskins Laboratory, where much of the early work on speech acoustics and 

perception originated, used synthesized speech to manipulate the frequency spacing of the first 

and second formant (F1 and F2). They presented the variations of the formant pairs to listeners to 

find the pattern that resulted in the highest accuracy of vowel identification. Results indicated 

that listeners use formant spacing (the frequency difference between F1 and F2), as a cue for 

vowel identification. For example, results indicated that the difference between a listener 

perceiving the vowel /i/ as in “beet” and /u/ as in “boot” was that /i/ had a much higher F2 and 
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subsequent formant spacing than /u/. Figure 2-2 shows the formant patterns that serve as spectral 

cues for each labeled vowel.  

 

 
Figure 2-2: The values and relative pattern of F1 (lower bars) and F2 (higher bars) for each of the
 
labeled vowels (from Delattre et. al., 1952). 
 

Spectral cues also contribute to the perception of fricatives. Due to the site of constriction 

in the oral cavity during production, the frication noise takes on a variety of spectral resonance 

patterns (Heinz & Stevens, 1961). The palatal fricatives /∫/ and /t∫/ have the largest resonant 

cavity, so the high frequency noise spectrum is concentrated above 2 kHz. However the spectral 

shape of the alveolar fricatives /s/ and /z/ are contained above 4 kHz. For the most anterior-

produced fricatives /f/ and /v/, the spectral shape of the noise is more broad-band due to a lack of 

resonant oral cavity. Listener’s can use their perception of the spectral energy of the noise to 

accurately label the phoneme presented (Harris, 1958; Heinz & Stevens, 1961; Jongman, 1989).  

Just as there are spectral cues in the noise of the frication, there are also such cues in the 

noise of the burst in plosive voiceless consonants. The frequency of the burst in relation to the 

second formant of the following vowel aids listeners in determining the place of constriction for 

the consonants /p/, /t/, and /k/. Liberman, Delattre, and Cooper (1952) showed that bursts 
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containing high spectral energy were perceived as /t/ by listeners, while bursts with spectral 

energy lower in frequency relative to the vowel’s F2 were perceived as /p/. Listener’s reported 

hearing /k/ when the spectrum of the burst was slightly higher than the following vowel’s F2.  

Perception of nasal consonants is accomplished by spectral cues. Nasal consonants have a 

perceptual feature called nasal murmur which is an additional resonance around 250 Hz 

(Mermelstein, 1977). This low frequency spectral cue aids listeners in distinguishing the nasal 

manner of the consonant being produced.  

 Intensity Cues 2.1.3

Intensity cues are acoustic perceptual features resulting from changes in the amplitude of 

phonemic production. Intensity is the most salient cue for detecting voicing in vowel and 

consonant production (Ohde, 1984). Presence of vocal-fold vibration results in overall acoustic 

patterns that are more intense than those produced without vibration. Intensity cues also are used 

to differentiate the manner of production between nasal and non-nasal consonants, in addition to 

the aforementioned spectral cue of nasal murmurs. Fant (1952) found that nasal consonants tend 

to have formants with weaker intensities than the neighboring vowels. Mermelstein (1977) also 

found that the lower intensity level of the energy band in the upper formants separate the nasally 

from the non-nasally-produced consonants. 

 Temporal Cues 2.1.4

Speech contains temporal variations that serve as acoustic cues in phonemic recognition. 

Temporal cues aid the listeners in perceiving the presence or absence of voicing in consonants 
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(House, 1961). Raphael (1972) found that for consonants in the final position (VC) lengthening 

the preceding vowel duration resulted in listeners perceiving more voiced consonants even when 

the final consonant was actually a voiceless production. When the vowel of the word “bet” was 

prolonged, the listeners’ perception of the final consonant changed to that of a voiced /d/ as in 

“bed”.  

The duration of the noise in fricatives provides a cue for the perception of consonant 

voicing. Voiceless fricatives such as (/f/, /s/, and /∫/) tend to have longer durations of noise than 

their voiced counterparts (/v/, /z/, and /t∫/) (Baum & Blumstein, 1987; Jongman, Wayland, & 

Wong, 2000). Temporal cues also distinguish between the perception of fricatives and affricates. 

A silent duration preceding /∫/ in the word “hash” causes the perception to shift toward /t∫/ as in 

“hatch” (Raphael & Dorman, 1980). 

Another temporal cue called periodicity is an important property of speech. Periodic and 

quasi-periodic phonemes such as vowels and voiced consonants fluctuate at rates between 50-

500 Hz. Aperiodic phonemes such as fricatives and voiceless plosives typically have fluctuation 

rates above 1 kHz. Listeners use this temporal cue not only to determine voicing and manner of 

production, but also to determine pitch because the rate of periodicity reflects the fundamental 

frequency of the voice (Rosen, 1992).  

 Spectro-Intensity Cues 2.1.5

All of the acoustic cues defined thus far have been one-dimensional. The remaining cues 

can be described as bi-dimensional, meaning that one acoustic feature varies as a function of 

another. Spectro-intensity cues are those in which changes in the intensity of certain frequency 

regions elicit different phonetic percepts. For voiceless stop consonants /p/ and /t/, there are 
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spectral cues that distinguish the place of production with the noise burst of the alveolar 

consonant /t/ having a higher frequency spectrum than the labial consonant /p/. Ohde and 

Stevens (1983) conducted a study examining the effect of burst amplitude on the perception of 

/pa/ and /ta/. The authors constructed a continuum of nine synthetic speech tokens with the 

spectral cues varying in steps from that of /pa/ to that of /ta/. They found that by enhancing the 

amplitude of the burst relative to the vowel energy, listeners tend to rate the sound as being /ta/ 

although the spectral cues correspond with the bilabial /pa/. Conversely, if the amplitude of the 

burst was decreased relative to the vowel energy, then the listeners were more likely to perceive 

/pa/, despite the fact that the spectral cues indicated /ta/. Similar relative amplitude cues also 

exist for the fricative consonants /s/ and /∫/ (Hedrick & Ohde, 1993).  

 Tempo-Intensity Cues 2.1.6

The speech spectrum contains gross tempo-intensity variations commonly referred to as 

the “amplitude envelope”. The amplitude fluctuation rate is characterized as having slow rise/fall 

times with the fluctuation rate being between 2-50 Hz (Rosen, 1992). Van Tasell and her 

colleagues (1987) explored the role of amplitude envelope on speech perception. In their 

experiment, the authors generated 19 speech waveform envelope noises that corresponded to one 

of 19 vowel-consonant-vowel utterances. The noise waveforms were then low pass filtered so as 

to extract the amplitude envelope. Listeners were then asked to identify the consonant of the 

filtered noise. The authors found that the listeners’ closed-set identification of the 19 consonants 

was above chance. Error analysis revealed that listeners were able to use the amplitude envelope 

cue to correctly group the utterances according to manner of production and presence of voicing. 

Numerous studies involving cochlear implants and narrow-band filtering have further confirmed 
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the importance of amplitude envelope cues (Warren, Reiner, Bashford, & Brubaker, 1995; 

Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995; Shannon, Zeng, & Wygonski, 1998).  

 Spectro-Temporal Cues 2.1.7

In his work describing the temporal information of speech, Rosen (1992) divided 

speech’s temporal aspects into three features. The first two are the previously mentioned 

periodicity and amplitude-envelope cues. The third feature called the fine-structured cue reflects 

the variations of the spectrum over short-time intervals. These cues display the rapid spectral 

movement over time. Examples of these spectro-temporal cues are formant transitions, duration 

of transitions, and voicing onset cues.  

Formant transitions result from the changes in the resonance of the articulatory 

mechanism as it smoothly transitions from one production stance to another. Figure 2-3 shows 

the F2 transitions from the consonants /b/, /d/, and /g/ to the vowels /i/, /e/ /ε/, /a/, /⊃/, /o/, and 

/u/. The F2 transitions from the phoneme /b/ to each vowel is characterized as having a rising 

transition, while the /g/ to vowel F2 transition is characterized as falling. The direction of the 

alveolar /d/ phoneme F2 transitions vary as a function of the following vowel (Delattre, 

Liberman, & Cooper, 1955). By systematically varying the direction and slope of the F2 

transition, the listener’s perception changes between /ba/, /da/, and /ga/ (Liberman, Harris, 

Hoffman, & Griffith, 1957). 
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Figure 2-3: The second formant transitions for /b/, /d/, and /g/ and the each of the labeled vowels
 
(from Delattre et. al., 1955). 

 

 

Stevens (1980) reported that this rapid change in the spectrum occurs over the first 10-30 

ms of the utterance. Psychoacoustic experiments have shown that by keeping F1 steady and 

removing the first 50 ms of the F2 transitions for the syllables /bV/, /dV/, and /gV/, listeners’ 

perception changes in that they report that they no longer hear the consonants /b/ and /g/, but 

hear /d/ paired with different vowels (Delattre et al., 1955). It is apparent that there is an acoustic 

wealth of information indicating the place of articulation during the brief formant transition 

period. Spectro-temporal cues also differentiate the semivowel glides /r/ and /l/, in that /r/ is 

marked by a low rising F3 and /l/ is characterized by a high falling F3 (Lisker, 1957). Longer 

formant transitions (> 40 ms) indicate the production of semivowel glides /w/ and /j/. Liberman, 

Cooper, Shankweiler, and Studdert-Kennedy (1956) found that by extending the transition 

durations of /bε/ and /gε/ to 40-50 ms listeners reported hearing /wε/ and /jε/. Formant transitions 

greater than 150 ms are perceived as diphthongs (Gay, 1970).  
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Spectro-temporal cues play a role in determining the presence or absence of voicing in 

the production of consonants. Stevens and Klatt (1974) found that listeners use two spectro-

temporal cues in the perception of voicing. The first cue was the duration of the formant 

transitions between the consonant and the vowel, with transitions of 10-30 ms perceived as 

voiced. Voiceless consonants have minimal or even negligible formant transitions. This is due to 

the transitions occurring during the voiceless burst of the initial plosive. The second cue the 

authors mentioned for voiced-voiceless distinction was voice onset time (VOT).  

Voice onset time is defined as the interval between the release of a stop occlusion and the 

onset of voicing. Voiced initial stops in which the voicing occurs at the same time or 

immediately following the release burst tend to have short VOT of no more than 20 ms. 

Voiceless stops in which the voicing lags behind the release burst have VOT greater than 25 ms 

(Lisker & Abramson, 1964). There is a clear and distinct categorical boundary between English 

voiced and voiceless cognate pairs around 20 ms, where consonants with VOT greater than 20 

ms tend to be perceived as voiceless and those with VOT less than 20 ms tend to be perceived as 

voiced. The location of this boundary at 20 ms confirms earlier research on auditory perception 

of temporal order (Hirsh, 1959).  

The frequency characteristic of voicing tends to be the fundamental frequency of the 

voice while the frequency characteristic of the release burst tends to be high frequency noise. 

Therefore VOT can be described as the temporal relationship between low and high frequency 

components. Pisoni (1977) carried out a study using non-speech tonal stimuli to mimic the VOT 

feature of stop consonants. He used a low frequency 500 Hz tone to mimic the low frequency 

voicing property and a 1500 Hz tone to represent the high frequency component of the burst and 

varied their relative tone onset time (TOT) between -50 and + 50 ms. After training, listeners 
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produced sharp identification boundaries around -20 and +20 ms, paralleling the results of the 

earlier VOT studies.  

Recently, Yuan and colleagues (2004) proposed an acoustic cue called Envelope Onset 

Asynchrony (EOA) that serves to distinguish a voiced consonant from its voiceless cognate in a 

similar manner as VOT and TOT. EOA uses the time asynchrony between the onset of two 

frequency bands of energy in the speech spectrum, the first being low passed at 350 Hz and the 

second being high passed at 3000 Hz to determine whether the consonant is voiced. For an 

articulated initial voiced consonant, low frequency energy either occurs before or simultaneously 

with the onset of the high frequency energy in the speech spectrum. In contrast, the onset of low 

frequency energy tends to follow the onset of high frequency energy for initial voiceless 

consonants. EOA is derived from subtracting the onset of the high frequency energy band from 

the onset of the low frequency energy band. Theoretically, the EOA for initial voiced consonants 

should be a negative value or zero and the EOA for initial voiceless consonants should be a 

positive value. In the acoustical analysis of two speakers’ speech spectrum, the authors found the 

overall mean EOA of 8 voiced consonants to be -12.4 ms and the overall mean EOA of 8 

voiceless consonants to be 142.5 ms.  

Ortmann, Palmer, and Pratt (2010) tested a group of listeners in order to determine 

whether EOA is a spectro-acoustic cue used by listeners for determining the presence of voicing 

in initial consonants. Recordings of six individual consonant-vowel syllables /ba/, /pa/, /da/, /ta/, 

/ga/, and /ka/ were filtered into two frequency bands, a low frequency band below 350 Hz and a 

high frequency band above 3000 Hz. For each syllable, these bands were delayed in time relative 

to one another in 25 ms steps so that an EOA continuum was generated for each CV token. 

Listeners completed a 2 alternative forced choice labeling and discrimination task for each 
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continuum. Figure 2-4 shows the normal-hearing listeners’ group average labeling and 

discrimination data for the syllables /pa/, /ta/, and /ka/. For each of the graphs, the percent of the 

listeners’ responses indicating a voiced percept is plotted as a function of EOA changing from a 

negative value to a positive value. For example, in Figure 2-4a the CV syllable /pa/ is perceived 

by listeners as /ba/ when the EOA is manipulated to have a negative value (far left of the graph). 

Overall, the results indicate that as the temporal onset asynchrony between low and high 

frequency bands of speech is manipulated, listeners’ perception of the consonant’s voicing 

properties changed from voiced to that of its voiceless cognate. 
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Figure 2-4(a-c): Normal-hearing listeners’ identification and discrimination data for the EOA 
continuums, a) /pa/ b) /ta/ and c) /ka/. For each of the graphs, the x-axis displays the 10 tokens 
representing the shift in EOA from a more negative value to a more positive value. The space in 
between each token value represents the adjacent token pairs (i.e., token 1 paired with token 2, token 
2 paired with token 3, and so on). The values along the y-axis are in percent. The line graph 
represents the data from the labeling task, so higher on the y-axis means that the listeners’ 
perception is voiced, while lower values represent a more voiceless percept. The bar graph displays 
the discrimination data, so higher y-axis values mean that a greater difference between the token 
pair was detected.  
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 Coarticulation 2.1.8

These spectral, intensity, temporal, spectro-intensity, tempo-intensity, and spectro-temporal cues 

are many of the overlapping acoustic cues that aid listeners in recognizing spoken language. 

These sub-phonemic cues have a complex map to phonemes in that there is not a one-to one 

correspondence between these aforementioned cues and the recognized phoneme. The map 

complexity is due in large part to coarticulation. Coarticulation occurs when two or more 

phonemes are produced with temporal overlap (i.e., lip rounding of the production of /s/ when 

saying “soon”). Lindblom (1963) found that the vowel 2nd formant spectral cues (recall Figure 

2-2) varied by as much as 70% when the vowel was produced following different consonants /b, 

d, g/ and with different syllable durations. Amazingly, listeners partaking in everyday 

conversation with many different speakers are still able to recover the intended phoneme and 

subsequent message despite all of this acoustic variability in speech (Smith, 2000).  

Another lack of perfect relationship between acoustic cues and perceived phonemes is 

evidenced in the F2 transition cue for the consonant /d/. According to the second row of Figure 

2-3, the transition cue for /d/ in the syllable /di/ (far left) is a rising transition. However, the same 

cue for /d/ in /du/ (far right) is a steeply falling transition. It is apparent that completely opposite 

cues are eliciting the same percept. Further studies have found that listeners are able to 

compensate for the acoustic variability of coarticulation (Lindblom & Studdert-Kennedy, 1967; 

Mann, 1980; Mann & Repp, 1980; Mann & Repp, 1981; Holt, Lotto, & Kluender, 2000). Mann 

(1980) found that target speech sounds are shifted by the preceding phonetic context. In this 

experiment listeners identified ambiguous target stimuli as either /da/ or /ga/ when they were 

preceded by /ar/ or /al/. The spectral cues for each of these individual consonants in isolation are 

1) /d/ has a high F3 onset frequency while 2) /g/ has a lower F3 onset, 3) the F3 frequency for /r/ 
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is low frequency compared to 4) /l/ which has a high F3 frequency offset. Coarticulation of the 

syllables /arda/ would result in the lowering of the F3 frequency for the consonant /d/ by the low 

frequency offset of the consonant /r/. The syllables /alga/ would have an acoustic pattern in 

which the third formant of /g/ would be raised by the temporal overlap with the consonant /l/ 

(See Figure 2-5a-d for a schematic diagram of this coarticulation). The results showed that 

listeners identified the ambiguous phoneme as /da/ when the precursor syllable was /ar/ and 

identified /ga/ more often in the context of /al/. Listeners were able to use context of the 

preceding phoneme (/ar/ & /al/) to correct for the spectral variability of the neighboring phoneme 

(/da/ & /ga/). 

     This puzzling relationship between speech acoustics and perception has caused 

researchers to develop several theories as to how listeners can withstand so much acoustical 

variation due to coarticulation and still retain phonemic and subsequent lexical recognition. 

These theories are divided into those that are articulation-based theories and those that are 

auditory-based theories (See Diehl, Lotto, & Holt, 2004 for a good review of speech perception 

theories).  
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Figure 2-5(a-d): Schematic spectrogram taken from Lotto & Kluender (1998) showing the 
coarticulatory effects of preceding /al/ on /da/ and /ga/ and /ar/ on /da/ and /ga/. Note the similarities 
in formant transitions of /ga/ and /da/ in (B) and (C). Also notice the spectral contrast between the 
third formant of the preceding consonants /l/ and /r/ and the following consonants /d/ and /g/. In (A) 
and (B), there is more contrast or disparity between F3 in /alga/ than /alda/. In (C) and (D), note the 
spectral contrast in /arda/ that is not present in /arga/. 
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 Theories of Speech Perception 2.1.9

2.1.9.1 Articulation Based Theories 

 The Motor Theory of speech perception was developed in the 1960’s by the research 

group at the Haskin’s Laboratory (Liberman et al., 1967; Liberman & Mattingly, 1985). This 

theory was conceptualized after the group spent nearly two decades capturing and linking 

acoustic properties to phonetic structure. In 1957, Liberman and his colleagues constructed a 

continuum of synthetic CV syllables varying in the slope of the F2 transition that resulted in a 

perceptual continuum spanning /ba/ to /da/ to /ga/. These CV syllables were then presented to 

listeners to either identify the initial consonant or to discriminate between pairs of adjacent 

stimuli on the continuum. The results displayed a sharp boundary between the perceived 

phoneme categories corresponding with a peak in discrimination accuracy between categories 

and then falling to chance within categories. This effect is known as categorical perception. 

Liberman and his colleagues, knowing the complex and variable map between the absolute 

values of acoustic cues and phonemic perception, began to explain categorical perception in 

terms of articulation rather than acoustics. They argued that the boundaries of the categories are 

more coincidental with the articulator’s place of production than the acoustic properties of 

speech. Because of this seemingly one-to-one correspondence between phonemes and 

articulation, it was hypothesized that phonemic analysis occurs along the speech neuromotor 

pathway rather than the auditory pathway.  

The Motor Theory accounts for perceptual recovery from coarticulation by stating that 

articulated phonemes are perceived by listeners via their own neuromotor commands. This way 

the listener perceives the intended gesture rather than the actual coarticulated gesture made by 

the speaker. Figure 2-6 displays the model of the Motor Theory of speech perception. In this 
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model, the auditory pathway is only responsible for receiving the acoustic patterns at the 

subphonemic level. An important aspect of this theory is that there exists a specialized speech 

decoder that breaks down the acoustic features into information about the vocal tract shape and 

articulatory gestures. Liberman and Mattingly (1985) claim that this module, which is unique to 

humans, enables listeners to recover from the acoustic consequences of coarticulation such as the 

lowering of F3 onset in /da/ when spoken in the bi-syllable /arda/. The recovered intended 

gestures are then sent to the neuromotor network where the features are extracted and linearly 

mapped to the appropriate phoneme. According to the Motor theory, this speech module is 

responsible for the human listener’s ability to separate speech in the presence of multiple talkers 

in that this module recognizes the presence and dynamics of more than one vocal tract shape and 

computes the resulting acoustic resonances, then separates the gestures according to vocal tract 

shape (Dorman, Raphael, & Liberman, 1979). 

 

 

 
Figure 2-6: A simplified diagram of the Motor Theory of speech perception. Note the use of  
 

              neuromotor commands for speech production. 
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The Direct Realist Theory, like the Motor Theory, is a gestural account of speech 

perception in which perception is linked to production (Fowler, 1986). While motor theorists 

believe that phonemic recognition occurs by recovery of the intended gestures of speech through 

a specialized speech decoder and neuromotor commands, the direct realist believes that listeners 

recover the talker’s actual gesture such as lip closure in the syllable /ba/. The Direct Realist 

Theory does not require features to be extracted from the acoustic signal because the acoustic 

signal is just a medium to transport gestures. Listeners do not perceive the spectral, intensity, and 

temporal properties of speech, but rather the speaker’s actual articulation of phonemes. This 

theory draws from the notion that when people rely on their haptic senses to feel and recognize a 

certain object, the senses do not quantify the amount of pressure on the skin of their fingertips, 

but rather seek information about the object itself (i.e., round, hard, smooth with stitches, and 

size = baseball). Therefore it was hypothesized that listeners do not extract the actual acoustic 

properties of speech to recognize sounds, but rather use the acoustics as a medium to perceive 

the phonetically structured articulators.  

Figure 2-7 displays a schematic diagram of the Direct Realist Theory (Folwer, 1996). 

This theory explains the perceptual hardiness toward coarticulation, as in the /arda/ example by 

stating that the syllable /ar/ and /da/ are two separate and independent phonemic units that are co-

produced. The listener recovers the two gestures and perceives the /da/ in /arda/ despite the 

acoustic variability of F3 (Fowler, 2006).  

The Analysis by Synthesis Theory, developed by Stevens and Halle (1967) at 

Massachusetts Institute of Technology, combines both a gestural and an auditory approach to 

speech perception. In this model (Figure 2-8), a listener perceives the acoustic pattern of speech, 

then generates a hypothesis regarding the phonemic structure of the utterance. The listener then 
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rapidly generates an internal auditory model of his own production of the same utterance. If the 

input’s overall acoustic pattern matches his projected ouput, then the listener accepts his 

hypothetical perception and accurate speech perception occurs. By analyzing the input in terms 

of his synthesis of the utterance, the listener normalizes the variability due to coarticulation. This 

theory was abandoned soon after it was created as the authors began to support auditory-based 

theories of speech perception.   

 

 

Figure 2-7: A simplified diagram of the Direct Realist Theory of speech perception. Note the lack of
 
acoustic and phonetic feature extraction. 

 

 

 

Figure 2-8: A simplified model of the Analysis by Synthesis Theory of speech perception. Note the
 
combination of both auditory and gestural processes for speech perception. 
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2.1.9.2 Auditory Based Theories of Speech Perception 

The Auditory Approach to speech perception states that phonemic and lexical recognition 

is achieved by the recovery of the acoustic properties of speech by the auditory sensory and 

cognitive network. Although the Acoustic Approach acknowledges that acoustic cues are 

generated by and correlated with articulatory gestures, speech understanding does not involve the 

perception of these gestures, nor is perception tied to production. Instead, acoustic cues are 

directly encoded as phonemes (Diehl et al., 2004). The Auditory Approach evolved as a result of 

several findings that challenged the articulation based theories of speech perception. These 

findings include results that indicated that some invariant acoustic cues to speech perception 

exist (Blumstein & Stevens, 1979), findings that animals were able to exhibit speech perception 

abilities (Kuhl & Miller, 1975; Kuhl & Miller, 1979; Kluender, Diehl, & Kileen, 1987), and data 

that demonstrated that human listeners can perceive non-speech stimuli similarly to speech 

stimuli (Stevens & Klatt, 1974; Pisoni, 1977; Holt et al., 2000). 

Cole and Scott (1974) proposed that listeners’ identification of at least three acoustic cues 

is crucial to accurate speech perception: invariant acoustic cues, context-conditioned cues, and 

waveform envelope cues. They described invariant cues as the acoustic cues that accompany a 

particular phoneme in any vowel context. Blumstein and Stevens (1979) stated that these 

invariant cues occur in the first 10-20 ms after the release of stop consonants. The authors 

analyzed the onset spectra of stop consonants paired with different vowels spoken by different 

speakers. They found three general templates that classified voiced and voiceless stop 

consonants according to place of articulation. The onset spectra of labial /b, p/ tend to have a flat 

or falling amplitude-frequency pattern, while alveolar /d, t/ possess an amplitude rising spectra. 

Velar consonants /g, k/ display a compact mid-frequency energy spectra. These three general 
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templates correctly identify the place of articulation 85% of the time across many speakers. An 

additional perceptual study found that listeners can appropriately categorize synthetic CV stimuli 

constructed with the differing onset spectral templates (Blumstein & Stevens, 1980).  

Another invariant cue mentioned was VOT to indicate the presence of voicing during 

stop consonant production. In quiet listening environments, although both VOT and the duration 

of F1 transition are cues, the duration of VOT alone is a salient cue to indicate voicing (Stevens 

& Klatt, 1974; Lisker, 1975; Summerfield & Haggard, 1977). In noisy environments the low 

amplitude of the spectral burst is obliterated by the spectrum of the background noise. In line 

with Cole and Scott’s theory that listeners use a combination of acoustic invariant and contextual 

cues, Jiang, Chen, and Alwan (2006) found that listener’s perception of voicing in CVs depended 

on the onset and duration of the first formant transition.  

Research findings that chinchillas (Kuhl & Miller, 1975; Kuhl & Miller, 1978) and quails 

(Kluender et al., 1987; Lotto, Kluender, & Holt, 1997) can perceive speech contradicts the 

assumption by the Motor Theory of speech perception that humans possess a specialized speech 

decoder. It appears that animals, without the mechanisms to produce speech, were able to 

perceive speech. Both the Motor Theory and the Direct Realist theory of perception were refuted 

further by findings showing similarities between perception of speech and non-speech stimuli by 

human listeners. Since non-speech stimuli such as pure tones and noise bursts are not made by 

articulatory gestures, a listener’s ability to be influenced by and perceive non-speech stimuli as 

speech supports the notion that perception results from the recovery of acoustic information not 

gestures (Holt & Kluender, 2000) 

How does the Auditory Approach to speech perception explain listeners’ perceptual 

resistance to the acoustical effects of coarticulation? In the previous example of /arda/ and /alga/, 
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the spectro-temporal cues for the consonants /d/ and /g/ are very similar due to the context of /r/ 

and /l/ (Figure 2-5). Yet listeners are able to resist the assimilative context to perceive /d/ and /g/. 

As in the presence of noise when the invariant acoustic cues are ambiguous, listeners must rely 

on context-conditioned cues for phonemic identification. The Auditory Approach (Figure 2-9) 

points to spectral contrast as a cue within context to aid listeners in neutralizing the assimilated 

effects of coarticulated phonemes (Lotto et al., 1997; Lotto & Kluender, 1998; Holt et al., 2000; 

Holt, Lotto, & Kluender, 2001; Diehl et al., 2004). Acoustic spectral contrast occurs when there 

are frequency differences in neighboring phonemes. Auditory perceptual contrast mechanisms 

may exaggerate these differences so that accurate phonemic recognition is maintained across 

context due to coarticulation (Holt & Kluender, 2000).  

 

 

Figure 2-9: A simplified model of a General Approach to speech perception. Boxes above the stages
 
in the model indicate cues that can shift the perception of speech. 
 

Spectral contrast can explain the results of Mann (1980) in which the perception of /da/ 

increases (/ga/ responses decrease) in the context of the preceding /ar/. Figure 2-5c and d show 

the schematic graphs generated by Lotto and Kluender (1998) of the first four formant transitions 

for the /arda/ and /arga/ stimuli that were used in the Mann (1980) study. In the syllable /arda/, 

the spectral disparity between the offset of the /r/ and the onset of the /d/ F3 transition is greater 

than that in the syllable /arga/. The spectral contrast between the neighboring phonemes in /alga/ 
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is shown in Figure 2-5b while Figure 2-5a shows the F3 spectral continuity of /alda/. This 

general auditory mechanism of spectral contrast may be a valuable tool in predicting the 

phonemic pattern of coarticulated speech despite its assimilative acoustic effects. Evidence for 

the role of spectral contrast has been observed for phonemic syllables (Mann & Repp, 1981a,b; 

Repp & Mann, 1980, 1981), lexemes (Elman & McClelland, 1988), and non-speech stimuli 

(Stephens & Holt, 2003; Wade & Holt, 2005; Holt, 2005). Because perceptual accommodation 

for coarticulation is evident at the subphonemic, phonemic, and lexical stages of auditory 

perception, this suggests that speech perception is an interactive process with a bi-directional 

flow of information between higher level cognition and the perception of the acoustical 

properties of the sound (McCelland, Mirman, & Holt, 2006). 

 Neurophysiology of Speech Perception 2.1.10

Regardless of the model for the perception of speech, the phonemic acoustic pattern has 

to be received by the ear and converted into the neural code that represents, depending on the 

model, the intended gesture, the actual gesture, or the acoustic properties corresponding to the 

target phoneme. The cochlea is a frequency analyzer consisting of rows of sensory hair cells 

along its basilar membrane. These hair cells serve as transducers converting mechanical energy 

to electrical impulses at the synapse of the attached auditory nerve fibers. Each hair cell and 

corresponding nerve fiber is a band pass filter with a maximum sensitivity to a specific or 

characteristic frequency (CF). The cochlea is tonotopically organized in that the CF of nerve 

fibers is determined by the location of the hair cell on the basilar membrane. The spectral 

properties of the speech signal are encoded by the place of neural activation along the cochlea 
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and this place code is preserved along the neural pathway to higher auditory centers (Hackney, 

2006). The rate of neural discharge indicates acoustic energy, and the energy onset/offset.  

Delgutte and Kiang (1984a,b,c,d) published a series of papers on their work of 

quantifying how speech is encoded in the auditory nerve. In these experiments, the authors 

recorded the responses of single nerve fibers with different CF’s to a variety of speech stimuli. 

The auditory nerve responses to vowel and fricative stimuli can be described either in terms of 

average rate of discharge or by the fine time patterns of spike (neuronal discharge) activity. 

Peaks in the discharge rate occur in the nerve fibers whose CF corresponds to each of the 

vowel’s formants, while the fine time pattern of the spike activity reflects the periodicity of the 

signal (Delgutte & Kiang, 1984a). The place of maximal rate of neuronal discharge for voiceless 

fricatives corresponded to the high frequency region of frication noise. The temporal pattern of 

neuronal discharge of fibers with lower frequency CF’s does not display any form of modulation, 

indicating that the signal is aperiodic (Delgutte & Kiang, 1984b).  

For consonants, the auditory nerve fiber has to respond to the rapid amplitude and 

spectral changes in the spectrum. There is evidence that nerve fibers use short-term adaptation as 

a mechanism to enhance their sensitivity to the dynamic characteristics of speech (Smith, 1979; 

Delgutte & Kiang, 1984c). Neural short-term adaptation occurs after the onset of an acoustic 

stimulus causes a rapid increase in the spike rate of neuronal discharge. Immediately after this 

sharp peak in activity, the nerve fibers gradually adapt to the signal by decreasing the rate of fire 

over time. This adaptation allows the auditory nerve fiber to be able to increase discharge rate 

when acoustic changes occur in the stimulus. Delgutte and Kiang (1984c) measured the effect of 

preceding context on the neural response to the consonant vowel transition corresponding to /da/. 

The 10 acoustic stimuli in their experiment consisted of /da/, and nine stimuli with the formant 
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transitions for /da/ preceded by the context of /a/, /i/, /u/, /n/, /s/, /sh/, /st/, and /d/ with the upper 

formants (F4 & F5) enhanced. The authors measured the response of an anesthetized cat’s 

auditory nerve fibers to each of these stimuli. The authors not only found evidence of neural 

short-term adaptation, but also found that discharge rates during the transitions decreased for 

those nerve fibers with CF’s corresponding to a frequency region that was present in the 

preceding context. When the /da/ transitions followed the phoneme /sh/, the neural response for 

the transitory period was reduced in the high CF-fibers. When the /da/ transition was preceded by 

a predominately low frequency energy /n/, the neural response to the transition was reduced in 

the low CF-fibers.  

It is reasonable to posit that neural adaptation may explain the mechanisms of spectral 

contrast. While the frequency regions that are shared between the coarticulated phonemes would 

be suppressed, thus enhancing the regions in which there is little or no spectral overlap (Holt & 

Kluender, 2000). In the example of /arga/, the lower frequency F3 of the /ar/ would theoretically 

cause short term adaptation on the third formant of the /ga/ (Figure 2-5d). The F3 of /da/ is a 

higher frequency than the F3 of the /ar/, so that different nerve fiber bundles are firing rather than 

the already adapted fibers (Figure 2-5c). This enhancement would cause listeners to favor the 

perception of /da/ in the context of /ar/.  

Although, neural adaptation is an attractive source of the contrast effect, there is evidence 

that contrast effects may arise from a more central auditory mechanism. Specifically, neural 

adaptation is a monaural mechanism yet studies have shown that contrast effects can result from 

dichotic presentations with the context cue delivered to one ear and the target stimuli delivered to 

the opposite ear (Holt & Lotto, 2002). Also, neural adaptation dissipates after 50-100 ms 

(Delgutte, 1980), while contrast effects linger after 400 ms (Holt & Lotto, 2002).  Animal studies 
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further ruled out the role of the peripheral mechanism at the level of the auditory nerve and 

cochlear nucleus in spectral contrast effects (Holt, Ventura, Rhode, Behesta, & Rinaldo, 2000). 

The acoustic dimensions of frequency, amplitude, and time are encoded in the auditory 

nerve fibers. This neural pattern of the speech spectrum is transmitted through the brainstem to 

the auditory cortex where it is cognitively processed and translated into lexemes. There is 

evidence that the tonotopicity from the cochlea to the auditory nerve fibers is somewhat 

maintained in the auditory cortex (Cheung, Bedenbaugh, Nagarajan, & Schreiner, 2001). The 

circuitry of the auditory cortex is extremely complex with ascending, descending and lateral 

connections. The auditory cortical map and its functional relationships are not fully understood 

and is a topic of interest and debate among researchers in the fields of neuroanatomy and 

neurophysiology (Budinger & Heil, 2006).  

2.2 SPEECH PERCEPTION BY LISTENERS WITH MILD-MODERATE 

SENSORINEURAL HEARING LOSS 

Sensorineural hearing loss causes a loss of sensitivity to sound. Elevated sensitivity thresholds 

increase the amount of difficulty in understanding speech. For listeners with mild-moderate 

hearing impairment, this loss of audibility accounts for most of the detriment in speech 

recognition performance (Dirks, Bell, Rossman, & Kincaid, 1986; Humes, Dirks, Bell, Ahlstrom, 

& Kincaid, 1986; Zurek & Delhorne, 1987; Dubno et al., 1989; Ching, Dillon, & Byrne, 1998). 

However, several studies have reported that audibility is not the only contributor for degradation 

of speech understanding in listeners with a more severe hearing impairment (Dubno et al., 1989; 

Rankovic, 1991; Ching et al., 1998; Hogan & Turner, 1998; Turner & Cummings, 1999). The 
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poorer than predicted performance on speech recognition tasks have been attributed to the 

reduction of frequency resolution in the damaged cochlea. Hearing-impaired listeners generally 

have auditory filters that are more broadly tuned than normal-hearing listeners (Tyler, Wood, & 

Fernandes, 1982; Glasberg & Moore, 1986; Moore & Glasberg, 1986). However, listeners with a 

mild-moderate hearing impairment may perform as well as normal-hearing listeners on spectral 

and temporal resolution tests (Tyler, Hall, Galsberg, & Patterson, 1984; Glasberg & Moore, 

1986; Thibodeau & Van Tasell, 1987; Summers & Leek, 1995). Because mild-moderate hearing-

impaired listeners’ difficulty understanding speech in quiet environments is more related to lack 

of audibility than poor spectral and temporal resolution, it can be hypothesized that these 

listeners can perceive the spectral, amplitude, and temporal pattern/cues of speech similarly to 

normal-hearing listeners once audibility has been achieved.  

 Spectral Cues 2.2.1

Spectral cues aid normal-hearing listeners in the perception of vowels. Nabelek and her 

colleagues (1993) conducted an experiment to test whether normal-hearing and mild sloping to 

moderately-severe hearing-impaired listeners differed in their perception of an /I – ε/ vowel 

continuum once audibility was accounted for. Both groups of listeners listened to several 

different vowel continuums with either a steady-state spectral cue or a formant transitional 

spectro-temporal cue in three listening environments: quiet, noise, and reverberation. The 

listeners were asked to label what they heard as being an /I/ or an /ε/. The location of the 

boundary and slope of the identification functions for each continuum in each of the background 

environments were compared between the groups. No significant differences were found 

between the groups regardless of the acoustic cues (steady-state or transitions) or the background 
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noise (quiet, noise, or reverberation). The results indicate that hearing-impaired listeners can use 

spectral cues to identify the vowels /I – ε/.  

Spectral information is critical to the perception of fricatives. Hearing-impaired listeners 

tend to have a lot of difficulty in the perception of fricatives due to the combination of the weak 

intensities of these phonemes and the presence of high frequency hearing loss. Listeners with 

hearing loss can use the spectral cue once it is made accessible to them through amplification. 

Hearing-impaired listeners listening to the /s/, /f/, and /θ/ spoken in a CV context by male, 

female, and child speakers, can correctly identify the fricative phoneme more than 80 % of the 

time as long as audibility is achieved through 9 kHz (Stelmachowicz, Pittman, Hoover, & Lewis, 

2001).  

 Intensity Cues 2.2.2

Intensity cues, in addition to spectral cues, aid in the perception of manner of phonemes such as 

voiced consonants and nasality. Miller and Nicely (1955) analyzed the error patterns of normal-

hearing listeners’ perception of sixteen consonants. The listeners listened and categorized these 

consonants under listening conditions comprised of either quiet or noisy environments, and low 

pass filtered speech. The authors found that the listeners ability to identify the voicing or the 

nasality of articulation was resistant to the deleterious effects of background noise, whereas place 

of articulation is severely affected by environmental manipulations. Studies analyzing the 

consonant confusion patterns of mild-moderately hearing-impaired listeners demonstrate results 

in which the classification of nasality and voicing is least affected by the sensorineural hearing 

loss while the number of errors for place of articulation is elevated (Dubno, Dirks, & Langhofer, 

1982; Turner & Brus, 2001).  
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 Temporal Cues  2.2.3

For normal-hearing listeners, temporal cues aid listeners in the perceptual distinction between 

fricatives and affricates (Kluender & Walsh, 1992). Hedrick (1997) found that when the duration 

of the noise in the voiceless fricative /∫/ is shortened from 140 ms to 50 ms, both normal hearing 

and moderately hearing-impaired listeners tend to label the consonant as /t∫/. Another study 

manipulated durational cues by inserting a silent gap of varying durations between the phoneme 

/s/ and the onset of the following vocalic phoneme of the word “say” to produce a perceptual 

continuum ranging from “say” to “stay” (Nelson, Nittrouer, & Norton, 1995). This study found 

that as long as the spectral-temporal cues (formant transitions) were not ambiguous, the 

boundary between the perception of “say” and “stay” was at the gap duration of 18 ms for 

normal-hearing and hearing-impaired listeners alike. In addition, psychoacoustic measures of gap 

detection of noise bursts were analyzed between the groups of listeners. When intensity level 

was equated in sensation levels between normal-hearing and mild-moderate hearing-impaired 

listeners, no significant difference was found between the two groups of listeners. It appears that 

listeners with sensorineural hearing loss restricted to mild-moderate severity can detect and use 

the temporal cues related to speech.  

 Spectro-Intensity Cues 2.2.4

According to Ohde and Stevens (1983) spectro-intensity cues serve to help listeners identify 

voiceless stop consonants. Normal-hearing listeners exhibit a labial /p/ bias when the amplitude 

of the consonant’s burst is lower than the following vowel’s fourth and fifth formant. Several 

authors have tested to see whether burst amplitude manipulations affect hearing-impaired 
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listeners CV identification scores (Gordon-Salant, 1987; Montgomery & Edge, 1988; Kennedy, 

Levitt, Neuman, & Weiss, 1998; Hedrick & Younger, 2001). These studies found that by 

enhancing the amplitude of the consonant so that the consonant to vowel ratio (CVR) is 

increased, hearing-impaired listeners’ performance on CV syllable identification tasks improved 

by as much as 45.8 percentage points for specific phonemes (Kennedy et al., 1998).  

A confounding factor in these results is that increasing the amplitude of the consonant 

increases the audibility of the consonants’ spectral properties for hearing-impaired listeners. 

Sammeth, Dorman, and Stearns (1999) conducted a study that manipulated CVR by holding the 

consonant audibility constant while reducing the amplitude of the following vowel by 6 and 12 

dB. They concluded that CVR enhancement by vowel reduction did not improve recognition 

performance of voiceless stop for either normal-hearing or mild-moderate hearing-impaired 

listeners. This study did find that hearing-impaired listeners, like the normal-hearing listeners, 

exhibit a labial /p/ bias when the spectral burst was lower in amplitude. Mild-moderate hearing-

impaired listeners can use intensity cues that vary as a function of frequency in speech 

perception.  

 Tempo-Intensity Cues 2.2.5

The cues within the temporal waveform of speech are very important to hearing-impaired 

listeners. Studies using CV stimuli constructed so that all spectral information is reduced or 

removed and the overall amplitude envelope is preserved have shown that hearing-impaired 

listeners perform just as well as normal-hearing listeners in consonant identification tasks 

(Turner, Souza, Forget, 1995; Turner, Chi, & Flock, 1999; Lorenzi, Gilbert, Carn, Garnier, & 

Moore, 2006). Turner, Chi, and Flock (1999) further studied the role of temporal envelope cues 
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by dividing VCV stimuli into two or more frequency bands, then creating two amplitude 

envelopes for each stimulus. When these bands of temporal patterns were given to normal-

hearing and hearing-impaired listeners, hearing-impaired listeners’ consonant recognition was 

worse than that of normal-hearing listeners. Although hearing-impaired listeners can use tempo-

intensity cues, it appears that when given several temporal patterns corresponding to different 

frequency regions of the stimulus, they are not able to integrate this information (Healy & 

Bacon, 2002). This spectro-tempo-intensity cue has been labeled as the temporal fine structure 

(TFS) of speech. It appears that hearing-impaired listeners’ inability to use the TFS as a cue 

affects the listener’s ability to perceive speech in background noise (Qin & Oxenham, 2003; 

Lorenzi et al., 2006) 

 Spectro-Temporal Cues 2.2.6

Spectro-temporal cues consist of formant transitions, transition durations, and voicing onset cues. 

For normal-hearing listeners, formant transitions are critical to their perception of the place of 

articulation. Listeners with sensorineural hearing loss have difficulty identifying the place of 

articulation for stop consonants (Owens, Benedict, & Schubert, 1972; Walden, Schwartz, 

Montgomery, & Prosek, 1981; Turner, Fabry, Barrett, & Horwitz, 1992; Turner & Brus, 2001). 

Lindholm, Dorman, Taylor, and Hannley (1988) examined the perceptual importance of three 

acoustic cues to the perception of voiced stop consonants by normal-hearing and mild-moderate 

hearing-impaired listeners. The stimuli consisted of /bæ/, /dæ/, and /gæ/ with the appropriate 

formant transitions, burst spectral templates, and rate of frequency change. The authors spliced 

the formant transitions and burst spectral properties out of each CV. They also calculated the rate 

of frequency change for each CV and found that for /bæ/ and /dæ/, the transition occurred over 5 
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ms while /gæ/ occurred over 20 ms. Then, the authors combined the cues in a matrix format to 

produce 18 combination stimuli. For example one stimulus consisted of the /bæ/ transition, 

paired with a /d/ burst spectrum, and a transition rate of 20 ms. These 18 combination stimuli 

were then given to the listeners in an identification task. The results showed that normal-hearing 

listeners mostly rely on the formant transition cue to identify the target phoneme regardless of 

the conflicting cues. Hearing-impaired listeners relied on formant transition cues less than the 

normal-hearing listeners. The impaired listeners’ identification performance was more influenced 

by the spectral shape and temporal properties of the signal. It appears that the impaired auditory 

system has some degree of difficulty using the rapidly changing formant transitions as a cue to 

speech perception (Zeng & Turner, 1990; Turner, Smith, Aldridge, & Stewart, 1997).  

Although hearing-impaired listeners demonstrate difficulty in using the transitions as 

cues, such is not the case for voice onset timing cues. These timing onset cues help listeners 

differentiate between voiced and voiceless cognate pairs. Johnson, Whaley, and Dorman (1984) 

found that listeners with mild-moderate hearing impairment did not significantly differ from 

listeners with normal sensitivity in the perception of voice onset time (VOT). Similarly, hearing 

impairment does not affect the perception of envelope onset asynchrony (EOA). Ortmann, 

Palmer, and Pratt (2010) examined the influence of EOA manipulations on the perception of 

voicing in a group of mild-moderate hearing-impaired listeners in addition to the previously 

mentioned group of normal-hearing listeners. Using the same stimuli and procedure as with the 

normal-hearing group, the authors found that the perception of voicing in stop consonants is 

influenced by the degree of temporal asynchrony. Figure 2-10 displays the hearing-impaired 

groups’ average labeling and discrimination data for /pa/, /ta/, /ka/. The hearing-impaired 
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listeners did not significantly differ from the normal-hearing listeners (Figure 2-4) in their use of 

EOA as a cue to voicing distinction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 (a-c): Hearing-impaired listeners’ identification and discrimination data for the EOA 
continuums, a) /pa/ b) /ta/ and c) /ka/. For each of the graphs, the x-axis displays the 10 tokens 
representing the shift in EOA from a more negative value to a more positive value. The space in 
between each token value represents the adjacent token pairs (i.e., token 1 paired with token 2, token 
2 paired with token 3, and so on). The values along the y-axis are in percent. The line graph 
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represents the data from the labeling task, so higher on the y-axis means that the listeners’ 
perception is voiced, while lower values represent a more voiceless percept. The bar graph displays 
the discrimination data, so higher y-axis values mean that a greater difference between the token 
pair was detected. 

 Hearing-Impaired Perceptual Performance and Models of Speech Perception 2.2.7

Listeners with mild-moderate hearing impairment appear to use cues in each of the acoustic 

dimensions to a certain extent once the speech signal is audible. Impaired auditory systems tend 

to rely more on spectral shape and temporal cues, than rapidly changing formant transitions. 

Articulation-based models of speech perception, such as the Motor Theory and Direct Realist 

Theory account for poorer speech perception in hearing-impaired listeners by stating that 

cochlear damage generates ambiguous gestures (intended or actual). Auditory-based theories 

state that the damaged cochlea distorts the acoustic properties of speech and causes ambiguity in 

the auditory neural mapping of features to phonemes/lexemes. Each of the models of speech 

perception can provide an explanation for hearing-impaired listeners’ performance.  

Little is known about the strategies hearing-impaired listeners use to differentiate 

acoustic similarities brought on by coarticulation. Although hearing loss interferes with listeners’ 

access to the spectral and spectro-temporal properties of speech, mild-moderate hearing-impaired 

listeners can use them to a certain extent (Lindholm et al., 1988). As coarticulation is rampant in 

conversational speech, it is reasonable to assume that listeners with mild-moderate hearing loss 

consistently use coarticulation to recover the intended phoneme. Auditory-based theories of 

speech perception promote the role of contrast effects to predict the phonemic pattern of 

coarticulated speech. It is not known whether hearing-impaired listeners are influenced by 

spectral contrast. Hearing-impaired listeners use or lack of use of spectral contrast could 

potentially shed light on the neural network mechanisms (peripheral v central) involved in 
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spectral contrast and could potentially strengthen the argument for one or more models of speech 

perception.  

2.3 ACOUSTICS OF CONVERSATIONAL SPEECH 

The majority of speech perception studies use stimuli such as synthesized syllabic tokens, 

naturally produced syllabic tokens, clearly spoken words, or rehearsed and read sentences or 

passages. While these tokens allow for the experimenter’s control of the acoustic characteristics 

of the stimuli, they are not wholly representative of the speech that listeners are exposed to daily. 

Daily communication consists of speech spoken in a conversational manner. There are 

intelligibility differences between conversational speech and speech spoken in a clear or 

distinctive manner for both normal and hearing-impaired listeners (Payton, Uchanski, & Braida, 

1994; Schum, 1996; Uchanski et. al., 1996; Krause & Braida, 2002; Liu, Del Rio, Bradlow, & 

Zeng, 2004; Liu & Zeng, 2006). Picheny and his colleagues (1985) found that there is a decrease 

in the intelligibility of conversationally produced nonsense sentences compared to similar 

sentences spoken more clearly. Also, the acoustic information within conversationally produced 

speech is different from clearly produced speech along the static dimensions of frequency, 

intensity, and time and the dynamic dimensions of spectro-intensity, intensity-temporal, and 

spectro-temporal variations (Picheny, Durlach, & Braida, 1986; Krause & Braida, 2004).  
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 Differences in Static Cues Between Conversational and Clear Speech 2.3.1

2.3.1.1 Spectral and Intensity Cues 

Static acoustic cues for speech perception result from a single acoustic property such as 

frequency, intensity, or time information. Spectral differences between conversational speech 

and clear speech are lower fundamental formant frequency values and elimination of the 

spectrally rich burst information in consonant plosives in conversational speech (Picheny et. al., 

1986; Krause & Braida, 2004). In their analysis of conversational speech, Picheny et. al. (1986) 

found that 60% of plosive bursts in the word final position were eliminated. Krause & Braida 

(2004) performed a similar acoustical analysis of clear and conversational speech, and reported 

that conversational speech has less relative energy above 1 kHz. Although the lack of high 

frequency spectral information in conversational speech contributes to poorer speech perception, 

it does not account for the total decreased intelligibility of conversationally spoken speech over 

clearly produced speech.  

2.3.1.2 Temporal Cues 

Temporally, conversational speech is drastically different from clear speech. Conversational 

speech ranges between 160 to 200 words per minute or 3-4 syllables per second, which is twice 

as fast as clearly produced speech (Picheny et. al., 1986).  Not only are there fewer pauses during 

conversational speech, but also the overall rate of articulation increases (Picheny et. al., 1986, 

Picheny et al., 1989; Byrd & Tan, 1996; Uchanski et al., 1996). Picheny, Durlach, and Braida 

(1989) continued their series of studies examining the intelligibility differences between clear 

and conversational speech by focusing on the role of speaking rate. The authors artificially 

slowed down the rate of a spoken sentence until its overall duration was equal to the duration of 
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the same sentence spoken clearly. They also temporally compressed clearly produced speech so 

that its overall duration was the same as conversationally produced speech. If speaking rate is a 

determining factor in the intelligibility advantage of clear speech over conversational speech, 

then slowing down conversational speech should increase intelligibility and increasing the rate of 

clear speech should decrease intelligibility. The results of this study did show that shortening the 

duration of clearly produced sentences decreased the intelligibility of the sentences. However, 

temporally expanding the duration of conversational speech so that it was overall temporally 

equal to clear speech did not improve performance. In fact, the intelligibility of artificially 

slowed conversational speech was worse than unprocessed conversational speech.  

Uchanski et. al. (1996) proposed that perhaps this failure to find an intelligibility 

advantage by slowing down the rate of conversational speech was due to the uniform expansion 

algorithm used to adjust the speaking rate. In their analysis of durational differences between 

conversational and clear speech, they found differences in phonemic segmental durations 

between the two speaking styles. They reported that while short vowels and voiced plosives 

increase 29% and 43% in duration for clear speech over conversational speech, clearly produced 

unvoiced fricatives and semivowels lengthen by 91% and 103% in comparison to conversational 

speech. Uchanski and colleagues (1996) used a non-uniform time-scaling technique to artificially 

slow down speech so that the phonemic segmental durations of conversationally produced 

sentences were equal to that of clearly produced sentences. They also used this same time-

scaling algorithm to speed up clear speech so that it was equal in segmental duration to 

conversational speech. Their results were similar to Picheny et al. (1989) in that artificially 

slowing down conversational speech resulted in poorer speech intelligibility for both normal 

hearing listeners in background noise and hearing-impaired listeners. Speeding up clear speech 
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also resulted in poorer intelligibility scores than those of non-processed conversational speech 

for both groups of listeners.  

Lui and Zeng (2006) inserted small gaps between the phonemic segments of 

conversationally spoken speech so that the durations of the sentences were equal to that of 

clearly spoken sentences. The intelligibility of the gap-inserted conversational sentences by 

normal-hearing listeners in background noise did increase relative to the unaltered conversational 

sentences. However, the intelligibility of their gap-inserted conversational speech was 

significantly poorer than clearly produced sentences. The authors concluded that the uniform and 

non-uniform signal processing used in the previous studies by Picheny et. al. (1989) and 

Uchanski et. al. (1996) to alter either the overall or segmental durations of speech introduced 

some extraneous distortions that resulted in poorer than predicted results (Lui & Zeng, 2006). 

They also concluded that the insertion of gaps increased the amplitude modulation and allowed 

more time for the efficient phonemic processing by the listeners (Fu, 2002) 

Krause and Braida (2002) further examined the role of speaking rate by using naturally 

produced speaking rate alterations of both clear and conversational speech. The authors trained 

five speakers with significant public speaking experience to produce clearly articulated speech at 

their internally defined slow, normal (conversational rate), and quick speaking rates. The 

speakers also were instructed to read aloud nonsense sentences in a “conversational manner” at 

each of the three rates. The speakers were given intensive training regarding the differences 

between the two speaking styles and speaking rates. The intelligibility scores from two listeners 

with normal hearing in background noise indicated that there is a benefit of clear speech as the 

speaker’s rate increases. For each of the five talkers, producing speech in a clear manner yielded 

higher intelligibility scores than the productions of conversational style speech, even when the 
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speaking rate between the two speaking styles was roughly equal to 200 words per minute. 

Although the rate of articulation is a primary difference between clear and conversational speech, 

the secondary fine acoustic differences between clear and conversational speech play larger roles 

in intelligibility. 

 Differences in Dynamic Cues Between Conversational and Clear Speech 2.3.2

2.3.2.1 Spectro-Intensity Cues  

The dynamic cues of speech perception are those described as bi-dimensional such as spectro-

intensity, tempo-intensity, and spectro-temporal cues. The faster speaking rate of conversational 

speech causes the acoustical properties of the bi-dimensional cues to differ from those of clear 

speech. One of the secondary effects of a faster speaking rate is an increase in phonemic 

coarticulation. Byrd and Tan (1996) used electropalatography to measure speaker’s tongue-

palatal contact when speaking the sentence, “Say baC1 C2ab again” (C1 and C2 are two different 

consonants) at a normal and a fast rate. They found that as speaking rate increases, the duration 

of tongue-palatal contact decreases for the consonants and that coarticulation occurs. 

Coarticulation was documented by the compromised tongue-palatal contact location between the 

two articulated consonants.  The articulation of the first consonant /d/ in the utterance /bad gab/ 

caused the place of constriction for the following /g/ to be more frontal and less intense at 

conversational speaking rate than when /bad gab/ was spoken at a slower speaking rate. There 

was also evidence that the second phoneme /g/ influences the place of articulation of the 

preceding phoneme /d/. This alteration of tongue-palatal constrictions in conversational speech 

results in spectral and spectro-intensity changes of plosive bursts. The weakening or deletion 

(Picheny et. al., 1986; Krause & Braida, 2004) of the plosive burst intensity and the shift in the 
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plosive’s center frequency disrupt the acoustic cue patterns found in speech (Blumstein & 

Stevens, 1979; Blumstein & Stevens, 1980; Ohde & Stevens, 1983) and could lead to phonemic 

ambiguity in conversational speech.  

2.3.2.2 Tempo-Intensity Cues 

The increase of articulation rate in conversational speech alters the amplitude envelope of the 

speech signal from that of slower, clearly spoken speech. Amplitude fluctuations over time are 

cues for stop consonant identification due to the brief periods of silence prior to the release of the 

burst (van Tassel et. al., 1987). Clearly spoken speech has greater temporal amplitude 

modulation than conversational speech (Krause & Braida, 2002; Liu et. al., 2004; Liu & Zeng, 

2006). Compared to clearly spoken speech, the boundaries between syllables are not as distinct 

in conversationally spoken sentences. In conversational speech the plosive bursts are either 

omitted (Picheny et. al., 1986, Krause & Braida, 2004) or slurred together (Byrd & Tan, 1996). 

The faster articulation rate of conversational speech leads to fewer and smaller gaps between 

syllables and words, which translates to a shallower depth for modulation frequencies below 3-4 

Hz than clearly produced speech (Krause & Braida, 2004). Conversational speech does not 

obliterate the tempo-intensity cue for phonemic identification, but it could make this cue slightly 

less distinctive. Although listeners with normal hearing rely on other acoustic cues to correctly 

identify consonants when these tempo-intensity cues are compromised (Christensen & Humes, 

1997), listeners with hearing impairment rely heavily on these tempo-intensity cues (Lindbolm 

et. al., 1988; Summers & Leek, 1992). 
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2.3.2.3 Spectro-Temporal Cues 

Spectro-temporal cues occur when frequency varies as a function of time. Voice onset time 

(VOT) and formant transitions are two examples of spectro-temporal cues. The dynamic formant 

movement has been shown to influence listeners’ perception of consonants (Delattre et. al., 

1955) and vowels (Hillenbrand et al., 1995). In conversational speech the vowel space, which is 

measured by the frequency area between the first and second formants of uttered vowels, is 

reduced when compared to clearly produced speech (Picheny et. al., 1986; Moon & Lindblom, 

1994; Ferguson & Kewley-Port, 2002). Ferguson and Kewley-Port (2002) analyzed the acoustic 

properties of 10 vowels uttered by a single speaker in both a conversational and clearly spoken 

manner. They found that the magnitude of the dynamic formant (F1 and F2) movement (amount 

of formant frequency change over time) was significantly smaller in conversationally produced 

speech than clearly produced speech. The combination of the shorter duration of conversational 

speech and the smaller vowel space of the speaker’s formant variability alters the duration and 

slope of the formant transitions. Normal-hearing listeners give greater perceptual weight to rapid 

formant transitions than the other acoustic cues in identifying consonants (Lindholm et. al., 1988; 

Hedrick & Jesteadt, 1996; Hedrick & Younger, 2001, 2007). Hearing-impaired listeners can 

perceive and use the rapid formant transitions, but their contributions to speech intelligibility are 

smaller than that for normal-hearing listeners. Hedrick and Younger (2007) demonstrated that 

hearing-impaired listeners performed similarly to normal-hearing listeners on the use of formant 

transitions to identify /p/ in a quiet listening environment. Once the formant transition was 

degraded by background noise or reverberation, the hearing-impaired listeners gave formant 

transitions less perceptual weight while normal-hearing listeners continued to use the transition 

information to identify phonemes. The shortening of formant transitions during conversational 
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speech could degrade this frequency-temporal cue for hearing-impaired listeners so that they 

may no longer rely on it for phonemic perception.  

In their acoustical analysis of clear and conversational speech, Picheny et. al. (1986) 

found that VOT was shorter for speech spoken in a conversational manner. For conversational 

speech, the VOT in stressed word-initial voiceless plosives was an average of about 80 ms as 

opposed to an average of 160 ms for clearly produced speech. Previous studies have reported 

shorter VOTs for voiceless plosives in speech spoken at a conversational rate (Klatt, 1975). Klatt 

(1975) reported an average VOT value of 47 ms for /p/ in the word-initial position (as in “pat”), 

and 12 ms for /p/ in the word-initial consonantal cluster of /sp/ (as in “spoon”). Krause and 

Braida (2004) also analyzed VOT differences in their corpus of conversationally and clearly 

spoken sentences by two speakers with public speaking experiences. The two speakers were 

chosen because they were able to produce “clear” speech at a conversational speaking rate of 200 

words per minute. These were the same speakers that were used in their previous study which 

demonstrated that there is a 14 point intelligibility advantage in speech spoken clearly even when 

it is spoken at the same rate as speech produced in a conversational manner (Krause & Braida, 

2002). The authors found that of the two speakers analyzed, only one had shortened his/her word 

initial voiceless stop consonants’ VOT in conversational speech (Krause & Braida, 2004). Since 

VOT tends to be shortened in conversationally spoken speech, it is likely that envelope onset 

asynchrony (EOA) also is affected in that the high frequency band containing the burst and 

aspiration are closer to the onset of the voicing of the vowel for voiceless plosives.  

In conclusion, conversationally spoken speech varies greatly from clearly produced 

speech. Although the increase of articulation rate is the most apparent difference between clear 

and conversational speech, it does not account for total reduction of speech intelligibility 
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(Picheny et. al., 1989; Uchanski et. al., 1996; Krause & Braida, 2002, 2004; Lui & Zeng, 2006). 

Conversational speech contains the very same static and dynamic acoustic cues as clearly 

produced speech, but the distinctiveness of these cues is degraded. When assessing either a 

listener’s real-world speech intelligibility or the impact a signal processing scheme has on speech 

intelligibility, it is important to choose speech stimuli that represent the acoustic properties of 

conversational speech.  

2.4 DIGITAL SIGNAL PROCESSING AND THE SPEECH SPECTRUM 

Listeners with mild-moderate hearing impairment use the spectral, intensity, and temporal 

patterns in speech as cues for speech recognition. It is important to consider how amplification 

devices and signal processing schemes can manipulate and change these acoustic properties. 

There is a volume of literature examining the effects of various algorithms such as wide dynamic 

range compression, noise reduction algorithms, and adaptive directional microphones on speech 

perception in hearing-impaired listeners (Ricketts & Henry, 2002; Souza, 2002; Chung, 2004; 

Souza, Jenstad, & Folino, 2005; Jenstad & Souza, 2005; Palmer, Bentler, & Mueller, 2006; 

Bentler & Chiou, 2006). These algorithms can affect the amplitude envelope cues and spectro-

intensity cues of speech, and can be deleterious to individuals with more severe hearing 

impairment. However, underneath these algorithms lies a source of signal distortion that is not as 

well studied. The digital signal processing (DSP) chip, which is inherent to every hearing aid 

sold in the United States today, introduces a delay to the speech signal that could possibly disrupt 

some of the spectro-temporal cues found in speech. 
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The delay at the output of digital hearing aids is a result of the combination of converter 

delay and processing delay. Converter delay is the delay caused by the analog/digital converter, 

which delays the signal approximately 0.7 ms across the spectrum of the incoming signal. 

Processing delay is defined as the resultant delay arising from the DSP algorithm that divides the 

signal into different frequency bands. Processing delay can be defined as either spectrally 

synchronous or spectrally asynchronous depending on the algorithm employed. Kates (2005) 

described three basic types of digital processing. First, there are DSP circuits that employ a time 

domain filter bank algorithm to divide the incoming signal. Time domain filtering introduces a 

spectrally asynchronous delay that delays the low frequency output relative to high frequency 

output. A second type of signal processing uses frequency domain filtering or fast Fourier 

transforms (FFT) to divide the incoming signal. FFT technique buffers or stores the incoming 

signal for analysis. The resultant output of a DSP circuit employing FFT has a  spectrally 

synchronous delay, meaning all frequencies are delayed a value determined by the size of the 

input buffer. A third DSP employs digital frequency warping. Warping combines the use of 

overlapping all-pass filters and FFT. Digital frequency warping introduces a spectrally 

asynchronous delay that delays the low frequency information relative to the high frequency 

information.  

Figure 2-11(a-d) displays the delay values of four brands of digital hearing aids fit with a 

closed-earmold: Siemens Triano, Widex Diva, Phonak Claro, and Resound Canta. Each hearing 

aid was programmed to the NAL-NL1 target for a 50 dB flat hearing loss. Two hearing aids of 

each manufacturer were used for test/retest reliability purposes. These measurements were taken 

from the ear canal of the Knowles Electronic Mannequin for Acoustic Research (KEMAR) who 

was fit with each hearing aid. The recordings for these measurements were obtained using an 
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Etymotic Research ER-11 microphone and a Zwislocki coupler inside of KEMAR. In an 

anechoic chamber, KEMAR was positioned in front of a loudspeaker at 0° azimuth. The delay of 

the amplification device was measured by subtracting the arrival time at the microphone of an 

impulse sound generated from a speaker without a hearing aid present from the arrival time of 

the impulse sound at the microphone with a functional hearing aid present. The Siemens Triano 

and Widex Diva hearing aids, which employ a time-domain filter bank algorithm, show signs of 

spectrally asynchronous delays with the low frequencies delayed relative to the high frequencies, 

while Phonak Claro and Resound Canta hearing aids with frequency domain filtering algorthms 

displayed a constant delay value across all frequencies. These delay values agree with those 

reported by Dillon and his colleagues in 2003.  
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Figure 2-11: Measured delay values for a) Siemens Triano BTE b) Widex Diva BTE c) Phonak Claro BTE
 
and d) Resound Canta BTE. The x-axis displays frequency in Hz and the y-axis displays delay values in ms. 
 

In addition to digital delay, there may be a physical delay caused by the fitting of the 

hearing aid. With advances in feedback cancellation algorithms, audiologists are able to fit 

digital hearings with an open-fit earmold. The advantages of the open-fit platform include 

minimal occlusion and provision of amplification only in the region of hearing loss for 

individuals with primarily a high frequency hearing loss. Open fit earmolds allow for two 

pathways of sound transmission to the eardrum. The openness of the earmold allows the natural 
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direct pathway of sound to reach the eardrum directly. All frequencies reach the eardrum, but the 

high frequency energy is attenuated by the high frequency hearing loss of the listener (Mueller & 

Ricketts, 2006). Amplified high frequency energy is delivered to the ear via the digital hearing 

aid by the open-fit earmold. The arrival time of the amplified high frequencies is delayed relative 

to the sound that arrived at the eardrum via the direct pathway. As the low frequencies are the 

most, and often times the only frequencies, audible to hearing-impaired listeners from the 

unamplified direct pathway, there is a an asynchronous delay between the low frequencies and 

the amplified high frequencies at the tympanic membrane.  

As a result, the sound at the eardrum is spectrally asynchronous due to the combination of 

the direct air conduction pathway and the output of the digital hearing aid. Figure 2-12 shows 

measurements of the effects of an open-fit earmold on the delay values at the output of the 

amplification device. These measurements were taken from the ear canal of the Knowles 

Electronic Mannequin for Acoustic Research (KEMAR) who was fit with the same hearing aid 

twice, once with an occluding earmold, and then with an open fit earmold. The recordings for 

this measurement were obtained using an Etymotic Research ER-7 microphone and a Zwislocki 

coupler inside of KEMAR. In an anechoic chamber, KEMAR was positioned in front of a 

loudspeaker at 0° azimuth. The relative delay of the amplification device was measured by 

subtracting the arrival time at the microphone of an impulse sound generated from a speaker 

without a hearing aid present from the arrival time of the impulse sound at the microphone with a 

functional hearing aid present.  

A MATLAB code calculated the relative delay between the peak-to-peak amplitude of 

the impulse sound between unaided and aided conditions. With an occluding earmold, there is a 

flat delay of the acoustic signal to the ear of 6.5 ms between 500 and 8000 Hz. The same hearing 
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aid fit with an open-fit earmold generated a spectrally asynchronous delay with essentially no 

delay up to 2000 Hz, then abrupt rise to a 6.5 ms delay through 6000 Hz. There is no delay in the 

low frequencies because the direct pathway of sound via the open-fit earmold causes the peak 

amplitude between unaided and open-fit aided condition to occur at the same time. The peak 

amplitude for the high frequencies is the delayed output of the hearing aid device. This does not 

mean that all high frequency energy is delayed in an open fit hearing aid. Unamplified high 

frequency energy does enter the ear canal, but the equation for calculating relative delay only 

uses the measured maximum peak amplitude of each frequency as the arrival time. A third 

measurement was made with the open-fit hearing aid turned off. This measurement shows that 

the direct pathway of sound to the ear canal is not delayed relative to a true open ear with no 

hearing aid present (Figure 2-12). However, this unamplified high frequency energy, though not 

delayed, is not audible to hearing-impaired listeners most of the time. The resulting delay of the 

audible high and low frequency energy of the input signal is spectrally asynchronous. 

Recently, with the advent of aggressive feedback cancellation algorithms, more clinicians 

are opting for open-fitting schemes for their patients. The open-fit amplification device delivers 

amplified high frequency energy to the ear, while the audible low frequency energy travels 

through the open ear canal. This hearing aid style is an attractive solution for the sloping high-

frequency hearing loss that is commonly caused by aging and noise exposure. Due to the rise in 

the popularity of open fit hearing aids, manufacturers are inventing hearing aid devices 

specifically designed for the open-fit platform.  
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Figure 2-12: The real-ear measurements showing the delay as a function of frequency with a closed- 
fit and an open-fit earmold attached to the same hearing aid. The x-axis displays frequency and the 
y-axis displays the delay values of the hearing device. For the open-fit earmold the high frequencies 
were delayed by the DSP hearing aid, causing a spectrally asynchronous delay. 
 

 Consequences of Acoustic Delay—A brief review of the literature 2.4.1

Recently, with the increase in digital hearing aid products and open fitting schemes, researchers 

have been interested in quantifying the deleterious effects of acoustic delay. Although the 

research literature examining the effects of acoustic delays on speech perception and production 

is variable (See Table 2-2 for a review of findings), there is a conclusion that spectrally 

asynchronous delays are more detrimental than spectrally synchronous delays to the listener’s 

tolerance and performance (Greenberg, Arai & Silipo 1998; Grant & Greenberg, 2001; Stone & 

Moore 2003). 

Stone and Moore conducted a series of studies (1999, 2002, 2003, 2005, 2008) to 

examine the perceptual consequences of acoustic delay. In their studies they used three different 
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outcome measures: a 7-point rating scale to rate the subjective perception of annoyance due to 

acoustic delay, a vowel-consonant-vowel (VCV) identification task, and a speech production 

measure. For each outcome measure, a different tolerable delay value was obtained. Overall their 

results indicated that increasing auditory delay has a negative impact on listeners’ perception. 

Specifically, their results indicated that participants are least tolerant of the qualitative effects of 

spectrally asynchronous acoustic delays. Participants rated delays as short as 9 ms as disturbing, 

even though the acoustic delays did not begin to disrupt the participants’ speech identification 

abilities until about 15 ms (Stone & Moore 2003). Speech production was not affected by 

spectrally asynchronous delays, but it was affected by synchronous delay greater than 30 ms 

(Stone & Moore, 2002, 2003). When Stone et al. (2008) manipulated asynchronous delay so that 

it was similar to the delay introduced by an open-fit hearing aids, results indicated that listeners 

were even less tolerant of delay with values of 5-6 ms being rated as disturbing.  

Many studies involving acoustic delays used sentence materials as the measure of 

intelligibility performance. Greenberg et al (1998) found that speech recognition performance is 

relatively unaffected until the acoustic delay exceeds 50 ms. The increased tolerance for 

spectrally asynchronous delays is most likely due to the acoustic redundancy found in sentence 

material as opposed to the VCV clusters used by Stone and Moore. Despite this increase of 

acoustic redundancy, listeners are still affected by these delays. Acoustic delays interfere with 

auditory-visual speech recognition (Grant & Seitz, 2000). For auditory-visual speech perception, 

the allowable delays can be as much as 160 ms before speech recognition of sentences 

deteriorates (Grant & Greenberg, 2001).  

It is important to note the type of acoustic delay the above researchers used in their study. 

Stone and Moore used synchronous delay values (1999, 2002, 2005), a spectrally asynchronous 
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delay with the low frequencies being more delayed than high frequency energy (2003), and a 

spectrally asynchronous delay with the high frequencies being delayed relative to low 

frequencies (2008). Grant and Greenberg (2001) and Greenberg et al (1998) generated spectrally 

asynchronous sentence stimuli in which two mid frequency energy bands were delayed relative 

to two lateral bands of energy. Grant and Seitz (2000) used synchronous delay values in testing 

auditory-visual perception. Although these studies give information about the effects of 

spectrally-asynchronous delays, only one (Stone et al., 2008) introduced signal manipulations 

that mimic the acoustic delay values at the output of an open fit digital hearing aid. The resultant 

delay of an open-fit device is asynchronous in that the amplified high frequency energy above 

2000 Hz is delayed, while the low frequency energy is not delayed at all (Figure 2-12). This 

single study indicated that listeners might be more susceptible to the subjective consequences of 

this type of delay. It would be useful to know if there are any objective consequences of such a 

delay. 

 

Table 2-2: Review of research regarding the impact of auditory delay 

Reference Outcome Measure Stimuli Type & 
Presentation Modality 

Type of delay Hearing 
function of 

subjects 

Maximum 
tolerable delay 

McGrath & 
Summerfield, 
1985 

Performance on a 
sentence recognition 
task 

Video recorded sentence 
material with and auditory 
presentation of F0 pulse 
train 
 
Presented Auditory-
Visually 

Spectrally 
synchronous 

Normal 
hearing 
subjects 

40 ms 

Grant & 
Seitz, 1998 

Performance on a 
sentence recognition 
task in background 
noise 
 

Auditory and Video 
recorded sentence 
materials with a fixed 
SNR 
 
Presented  
Auditory-Visually 

Spectrally 
synchronous 

Mild to 
severe 
sloping 
sensorineur
al hearing 
loss 

200 ms 
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Arai & 
Greenberg, 
1998 

Performance on a 
sentence recognition 
task 

Audio recorded sentence 
material filtered in to 19 
¼ octave channels 
 
Presented Audition only 

Spectrally  
asynchronous  
 
These 19 
channels were 
then delayed 
with respect to 
each other to 
create 
“jittered” 
speech 

Normal 
hearing 
subjects 

140 ms 

Greenberg, 
Arai, & 
Silipo, 1998 

Performance on a 
sentence recognition 
task 

Audio recorded sentence 
material then filtered into 
4 1/3 octave bands 
 
Presented Audition only 

Spectrally 
asynchronous 
delays with the 
mid frequency 
bands varied 
relative to the 
lateral bands 
 

Normal 
hearing 
subjects 

50 ms 

Stone & 
Moore, 1999 

7 point rating scale of 
disturbance due to 
delay of acoustic 
signal  

Subjects listened to a 
recorded passage of  read 
text 
 
Presented  
Audition only 

Spectrally 
synchronous  

Normal 
hearing 
subjects 
with 
simulated 
hearing loss 

20 ms 

Agnew & 
Thornton, 
2000 

Subjects manually 
adjusted the amount 
of group delay 
introduced by the aid 
by adjusting a slider 
on a computer.  
 
Subjects adjust the 
amount of delay until 
they were just able to 
notice the delay and 
further increased the 
delay until they 
reported it to be 
“objectionable” 

Subjects spoke and rated 
the effect of delay on the 
sound of their own voice. 

Spectrally 
synchronous 

Normal 
hearing 

3-5 ms was 
“noticeable” 
 
> 10 ms was 
“objectionable 

Grant & 
Greenberg, 
2001 

Performance on a 
sentence recognition 
task 

Auditory and Video 
recorded sentence 
materials  
 
Audio consisted of two 
spectral slits rather than 
the full bandwidth of 
speech 

Spectrally 
synchronous 

Normal 
hearing 
subjects 

160 ms 
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Stone & 
Moore, 2002 

7 point rating scale of 
disturbance due to 
delay of acoustic 
signal 
 
Laryngographic 
measures of speech 
production   

Subjects read aloud a 
passage of written text 
 
Presented  
Audition only 

Spectrally 
synchronous 

Normal 
hearing 
subjects  

20 ms for 
disturbance rating 
 
30 ms for speech 
production 
disruption 
 

Stone & 
Moore, 2003 

7 point rating scale of 
disturbance due to 
delay of acoustic 
signal 
 
Speech perception 
performance score 
 
Measurement of 
speech production 
rates 

Subjects read aloud a 
passage of written text 
 
VCV syllables for speech 
perception measures 
 
Presented  
Audition only 

Spectrally 
asynchronous 
delays 
 
Low 
frequencies 
were delayed 
relative to high 
frequencies 

Symmetric, 
bilateral 
moderate 
sensorineur
al hearing 
loss 

9 ms for 
disturbance rating 
 
15 ms for 
decreased 
performance on 
VCV 
identification task 
 
Speech 
production was 
not affected by 
the delays 
introduced in this 
study 
 

Stone & 
Moore, 2005 

7 point rating scale of 
disturbance due to 
delay of acoustic 
signal 
 
 

Subjects read aloud a 
passage of written text 

Spectrally 
synchronous 

Symmetric, 
bilateral 
sensorineur
al hearing 
loss 

Slight HL = 23 ms  
 
Mild HL = 15 ms  
 
Moderate HL =32 
ms 

Stone, 
Moore, 
Meisenbacher, 
& Derleth, 
2008 

7 point rating scale of 
disturbance due to 
delay of acoustic 
signal 
 

Subjects listened to 5 
second recordings of 
continuous discourse 

Spectrally 
synchronous 
 
& 
 
Spectrally 
asynchronous 
simulating the 
delay found in 
open-fit 
hearing aids 

Normal 
hearing 
subjects  
 
One 
condition 
involved a 
simulated 
hearing loss 

5-6 msec for gain 
plus spectrally 
synchronous 
delay  
 
5 msec for 
spectrally 
asynchronous 
delay with a 2k 
Hz high frequency 
delay 
 
Results for 
simulated hearing 
loss and high 
frequency 
delay/gain 
inconclusive 

 

Envelope Onset Asynchrony (EOA) is the time asynchrony between high and low 

frequency energy onset in naturally produced speech (Yuan et al., 2004). Voiceless CVs tend to 
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have positive EOA so that high frequency energy onset precedes low frequency energy. If you 

manipulate the EOA of a naturally produced voiceless CV by delaying the high frequency energy 

onset, the perception changes to that of its voiced cognate (Ortmann et al., 2010). It may be 

possible that the introduction of the asynchronous delay by the open fitting platform could 

interfere with the wearer’s perception of voicing. The audible low frequency energy of the 

syllable /pa/ could travel via the ear canal and arrive at the eardrum prior to the arrival of the 

amplified high frequency energy thus causing the perception to be more like /ba/. Further 

research in which the asynchronous delay is manipulated in a similar fashion to digital hearing 

aid devices needs to be conducted in order to confirm this hypothesis. 

 Summary and Empirical Question 2.4.2

The review of speech perception research points to many acoustic cues used by listeners to aid in 

phonemic recognition. The output of the human articulator contains acoustic patterns that vary in 

frequency, intensity, and time. The structured variance of these dimensions with respect to one 

another form the cues listeners use to perceive speech. In reviewing the literature on the speech 

perception ability of normal-hearing listeners and hearing-impaired listeners with mild-moderate 

sensorineural hearing loss, it was found that in quiet listening environments both groups of 

listeners use the same acoustic cues for speech perception. Hearing-impaired listeners tend to 

rely on temporal, tempo-intensity, and some spectro-temporal properties of speech for speech 

perception (Johnson et al., 1984; Lindholm et al., 1988; Turner et al., 1995, Ortmann et al., 

submitted).  

In everyday situations hearing-impaired listeners are exposed to conversationally spoken 

speech that is different from the clearly spoken speech or synthetic speech that is used in 
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audiometric speech perception tests. The most obvious acoustical differences between clearly 

produced and conversationally spoken speech are the faster articulation rate and fewer pauses of 

conversational speech (Picheny et al., 1986; Uchanski et al., 1996; Krause & Braida, 2002; Liu 

& Zeng, 2006). In addition to the fast rate of conversational speech, there are acoustic alterations 

at the phonemic level. The spectral bursts of word-final plosive consonants are often times 

shortened or omitted (Picheny et al., 1986), the temporal distinction or gaps between syllables 

and words are smaller (Picheny et. al., 1986; Byrd & Tan, 1996), and the dynamic spectro-

temporal cues, such as formant transitions and voice onset time are shorter (Picheny et. al., 1986; 

Ferguson & Kewley-Port, 2002, 2004). The degradation of these acoustic cues by conversational 

speech increases perceptual ambiguity by hearing-impaired listeners (Picheny et. al., 1985; 

Payton et. al., 1994;). While normal-hearing listeners can capitalize on the redundancy of these 

cues, hearing-impaired listeners are not as fortunate.  

When assessing the effect of current signal-processing schemes on speech intelligibility, 

it is important to use conversational speech as stimuli in order to not only capture the “real 

world” hearing aid benefit by the hearing-impaired listener, but also to see the interaction 

between the hearing device and conversational speech’s rapidly changing acoustics. One possible 

interaction stems from the digital delay introduced by digital signal processing in combination 

with open-fitting schemes. It is hypothesized that these spectrally asynchronous delays disrupt 

the temporal cues hearing-impaired listeners need to accurately perceive conversational speech.  

This review of the literature leads to the following question. 

♦ Does the introduction of spectrally asynchronous delay that is similar to the delay 

introduced by open-fit digital hearing aids, lead to poorer speech intelligibility of 

conversationally spoken speech by mild-moderate hearing-impaired listeners? 

• If so, how much spectrally asynchronous delay can be tolerated before 

speech intelligibility is affected? 
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3.0  METHODS  

In order to answer the aforementioned empirical questions, careful consideration was taken to 

ensure that the proposed project would be constructed so that variability due to extraneous 

factors would be minimized. A Pre-Experiment validated the stimuli used in the Main-

Experiment that focuses on the question, “Does the introduction of spectrally asynchronous 

delay that is similar to the delay introduced by open-fit digital hearing aids, lead to poorer speech 

intelligibility of conversationally spoken speech by mild-moderate hearing-impaired listeners?” 

The following section outlines the characteristics of the speech stimuli, signal processing 

conditions, study participants, and procedures for administration of the protocol for both the Pre-

Experiment and the Main-Experiment. A description of the statistical analysis and a list of the 

possible outcomes are presented. 

3.1 PRE-EXPERIMENT 

 Speech materials  3.1.1

The speech materials used for this research study are the sentences from the revised Speech 

Perception in Noise (r-SPIN) test (Bilger, Nuetzel, Rabinowitz, & Rzeczkowski, 1984). The r-

SPIN consists of eight lists of 50 sentences. Within each list are 25 high predictability and 25 
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low predictability sentences. High predictability sentences are those in which sentence context 

serves as a cue for determining the final monosyllabic word of the sentence. An example of a 

high predictability sentence is “The doctor prescribed the DRUG”. Using sentence context, 

listeners can identify the final word as “drug” even if the acoustical properties of the word are 

degraded by background noise. A low predictability sentence provides limited linguistic context 

to cue the final word. For example, “She has known about the DRUG” is a low predictability 

sentence. Lack of contextual cues will make the final word harder to identify than when it is in 

the high predictability sentence. Although the word “drug” is the same in both sentences, 

listeners are more reliant on the acoustic characteristics of the word when it is in the low 

predictability sentence. Because the purpose of this research study is to see whether the 

acoustical consequences of spectrally asynchronous delay impact speech intelligibility, only the 

25 low predictability sentences from each of the eight lists were used. This ensured that the 

listeners relied on acoustic cues for speech perception, not sentence context. Appendix A 

includes all of the low predictability sentences in their appropriate list.  

Sentence material, as opposed to single word lists, was chosen so that the stimuli would 

best reflect conversational speech. Sentences also capture word and syllabic boundaries, which 

could be less distinct with the addition of spectrally asynchronous delay. The r-SPIN sentence 

materials were chosen not only because of the ability to control for the use of sentence context, 

but also because all of the sentences have been subject to rigorous psychometric testing to 

control for word familiarity, word frequency, prosodic factors, and phonetic content within and 

across each list of sentences (Kalikow, Stevens, & Elliot, 1977; Bilger et. al., 1984).  

In the development of the SPIN, Kalikow and his colleagues (1977) formed an initial 

corpus of 1,148 homogenous sentences constrained to 5-8 words and 6-8 syllables each. These 
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sentences were constructed so that 669 sentences had a highly predictable final monosyllabic 

word and 479 sentences had low predictability for identification of the final word. All the words 

were controlled for word frequency in the English language. After conducting several speech 

perception tests with these sentences using normal- hearing listeners as participants, the authors 

threw out several hundred sentences due to either poor intelligibility of the sentences or low key 

word familiarity. The authors also ensured that phonetic content of the sentences and final 

keywords were typical of conversational language. The final products of this culling process 

were eight equivalent lists of 50 low and high predictable sentences (Kalikow et. al., 1977). 

Bilger and his group (1984) revised the original SPIN to ensure list equivalency among the low 

probability sentences. They also standardized the test with + 8 signal to noise ratio on 128 

listeners with sensorineural hearing loss. 

Kalikow et. al. (1977) compared the intelligibility of key words in high versus low 

predictability context presented with a signal to noise ratio of +10 dB. For a group of 81 normal-

hearing listeners, the average score for low predictability (LP) key words was 88% correct. If the 

LP sentences were given to normal –hearing listeners in a quiet environment, the average score 

should be greater than 88%. This study’s recorded LP sentences were presented to a group of 

normal-hearing listeners to ensure that the key words of the sentences were intelligible under 

optimal conditions. 

 Conversational recordings 3.1.2

A single male speaker with experience in radio and television public speaking was used for the 

recording of the LP sentence materials. The speaker was seated in a sound treated booth with his 

mouth 8 inches away from a mounted Audio-Technica cardiod-dynamic microphone (bandwidth 
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= 60 to 13,000 Hz). The microphone was routed to a Panasonic digital recorder with settings for 

a mono recording at a 44.1 kHz sampling rate. The sensitivity of the microphone was adjusted to 

prevent any peak clipping of the speaker’s voice. The speaker was instructed to say each 

sentence at least four times. For the first sentence utterance, the speaker was instructed to read 

the sentence aloud in a clear manner. The following instructions from Schum (1996) were given. 

“Imagine that you are speaking to a person that you know is hearing-impaired.  

I want you to speak as clearly and precisely as possible. Try to produce  

each word as accurately as you can.” 

Once the satisfactory recording of a clearly produced sentence was made, as indicated by 

the speaker speaking slowly, carefully enunciating each word, then he was instructed for 

conversational speech. The speaker was told to memorize the sentence, and to say each sentence 

within conversation three times. He was instructed as follows.  

 “Speak naturally as you would in conversation with your friends.  

Conversational speech is different from the clearly spoken speech  

you used before. For example, you tend to talk faster in conversation.  

Keep this in mind as you say these sentences again. I want you to  

sound as natural and conversational as possible.”  

For each sentence, the speaker was engaged in a conversation about the sentence. He said 

the sentence as memorized and immediately followed the sentence with another, so as to keep 

the natural flow of conversation. For example, if the sentence was “I was considering the crook”, 

the speaker said, “I was considering the crook. He broke into my house the other day.” Not only 

does the additional sentence kept the natural flow of conversation, but it also minimized the 

speaker’s tendency to stress the final spoken word. The second sentence was given to the speaker 
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and was 10-12 syllables in length, so that all of the sentence pairs were similar in syllabic 

structure. The speaker was not given any guidelines as to how fast or “conversational” he should 

speak. Krause and Braida (2002, 2004) showed that there are individual differences in the 

articulation rate of conversational speech. The rules for the recording were that it must sound as 

natural as possible, that it must be spoken effortlessly, and that it is faster than his clear speech 

productions. When the recording session was complete, there were four recordings (one sentence 

will be clearly spoken and the three others will be spoken conversationally) of each of the 200 

sentences.  

 Analysis of Conversational Speech 3.1.3

All soundfiles were edited in Adobe Audition 2.0. For each sentence recording, the 

soundfiles were low pass filtered (10 kHz cutoff) to remove any high frequency noise. The single 

clear production and the three conversational productions of each sentence were excised and 

saved in individual files. For each sentence, only one of the three conversational productions was 

chosen as the final sentence stimulus. The determinants for the final conversational recording 

stimulus were the speaking rate (words per minute, wpm), the articulation rate (syllables per 

second, syl/s), vowel duration, and VOT. Picheny et. al. (1986) found that the average rate of 

conversationally spoken speech was 200 wpm. Krause and Braida (2002) found that some talkers 

spoke conversationally at rates up to 315 wpm. The conversationally spoken sentences chosen to 

be part of the stimuli had average speaking rates between 200 and 315 wpm. These sentences 

were analyzed further with measurements of vowel duration and VOT. Ferguson and Kewley-

Port (2002) reported that the vowel duration of conversational speech is roughly 50% that of 

clear speech. The VOT of word-initial voiceless plosives is shortened in conversational speech as 
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well (Klatt, 1975; Picheny et. al., 1986; Krause & Braida, 2004). The chosen conversational 

sentence presented vowel durations that were roughly half that of its clearly produced 

counterpart and a measureable decrease in the VOT of voiceless plosives. The speaking rate, 

vowel duration, and VOT of each of the recordings, clearly spoken, conversationally spoken, and 

the original r-SPIN recordings (Bilger et al., 1984) were analyzed and compared for differences. 

Picheny et al. (1986) reported that word-final plosives sometimes are not released in 

conversational speech. As the listeners are being scored on the recognition of the final key word 

of the r-SPIN LP sentences, it was a criterion that the final word had to contain acoustic cues for 

every phoneme in the word. The change in speaking rate and durations of vowels and VOT, as 

well as the availability of phonemic cues in the final word served as the criteria for choosing 

each of the conversationally produced token of the r-SPIN LP test items. Once each sentence was 

chosen, the intensity levels were equated on average RMS via Adobe Audition. Each sentence 

was assigned into the appropriate equivalent list designated by Kalikow and colleagues (1977). 

There were 8 lists of 25 sentences for a total of 200 conversationally spoken sentences (see 

Appendix A). These 200 conversationally spoken sentences were presented to 15 normal-hearing 

listeners to test for the intelligibility of the final target word of each sentence. 

 Subjects 3.1.4

Fifteen normal-hearing participants were tested for the validation of the conversationally 

recorded sentences. The participants were recruited from the community of the St. Louis area, as 

well as from the caseloads of the Washington University School of Medicine Adult Audiology 

Clinic. All participants were between the ages of 19-30 years old (mean age = 23). The 

participants were excluded if they were not native speakers of English and/or if they reported 
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having recent middle ear pathology, otologic surgery, and/or neurologic pathology. The 

participants were not excluded on the basis of race or gender. All participants will be given 

informed consent in accordance with the guidelines of the Institutional Review Board (IRB) of 

both Washington University in St. Louis, Missouri and University of Pittsburgh in Pittsburgh, 

Pennsylvania. In addition to the aforementioned age and case history criteria, these participants 

all had audiometric thresholds less than 15 dB from 250 Hz through 8 kHz in both ears and word 

recognition scores of the Northwestern University monosyllabic word lists (NU-6) within the 

90% confidence limit based on their pure tone average (Dubno, Lee, Matthews, Mills, & Lam, 

1995).  

 Procedure 3.1.5

All participants were screened after obtaining informed consent. Only after signing the consent 

form were they considered enrolled in the study. A self-report case history questionnaire 

(Appendix B) was administered to inquire into the participants’ general health, history of hearing 

loss and/or middle ear disease, otologic surgery, and neurologic disorder. To determine auditory 

status, a standard audiometric test battery was completed. This included bilateral air and bone 

conduction threshold testing at the standard audiometric frequencies (ASHA, 1978), and word 

recognition testing with the Auditec recording of the Northwestern University Test #6 (NU-6) 

word lists (Tillman & Carhart, 1966). All of the equipment used to perform the tests of auditory 

function was calibrated according to the appropriate ANSI standards. All testing was conducted 

in test rooms that meet the ANSI standards for maximum background noise.  

Once the participants were confirmed to have normal hearing and met all of the 

inclusionary criteria, they participated in the listening task. The listeners were seated in an 
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audiometric test booth and listened to the sentences presented diotically at 60 dB SPL through 

ER-2 insert earphones. 

Prior to the test session, the presentations level of the conversationally spoken sentences 

were verified to be 60 dB SPL RMS. First, a calibration soundfile containing white noise with an 

average RMS equal to the average RMS of the sentence recordings was made and saved onto the 

computer as “original calibration noise”. Using a Frye 7000 analyzer, real ear probe microphone 

measures were used to verify the output of the insert earphone in the participants’ ears. Using the 

“original calibration noise” soundfile as the output signal of the earphones, the attenuator of the 

audiometer was adjusted so that the time weighted output of the ER-2 earphone peaked at 60 dB 

SPL on the Frye 7000 probe microphone system. The sentence stimuli were presented at the 

specified audiometer dial HL level to the participant. Calibration was performed before each 

participant’s test session to ensure equal presentation level across subjects.  

Once the stimuli calibration was complete, the sentences in the pre-experiment were 

presented to each participant using SuperLab 4.0 (Cedrus Corporation) software on a computer 

connected to a Grason-Stadler 61 audiometer. The 200 conversationally recorded sentences were 

presented randomly to each participant. The participants entered their responses in an Excel 

worksheet on a computer in front of them. The participants were instructed to “Listen carefully 

to the following sentences. Type the last word of each sentence in the appropriate blank on the 

worksheet. There are 200 sentences total and will be divided in groups of five with a 10 second 

pause between groups to give you time to compete your answers. You will be given a break after 

25 sentences.” The pre-experiment procedures took approximately 1-1.5 hours to complete.  
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 Data Analysis 3.1.6

Once all of the data from the pre-experiment were collected, the data for each listener were 

converted into percent correct final-word identification. The data were then averaged across 

listeners and compared to the average score obtained by Kalikow et al. (1977). 

3.2 MAIN-EXPERIMENT 

 Stimuli  3.2.1

The purpose of the main-experiment was to examine whether spectrally asynchronous delay 

affects the intelligibility of conversationally spoken sentences for hearing-impaired listeners. The 

stimuli used in the main-experiment were the set of 200 conversationally spoken sentences that 

was found to be intelligible by the group of normal-hearing listeners from the pre-experiment. 

The stimuli were modified so that the acoustic properties mimic the asynchronously delayed 

pattern of open-fit hearing aids. Figure 2-12 shows that the energy above 2 kHz is delayed in an 

open-fit hearing aid. Armed with this information, a MATLAB code was written to create four 

conditions in which the frequencies above 2 kHz were delayed by a specific value (0, 4, 8, or 32 

ms) relative to the frequencies below the 2 kHz cut-off.  
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 Simulated spectrally asynchronous delay 3.2.2

The steps for creating the asynchronously delayed sound files are depicted in Figure 3-1. 

Each sentence was filtered into a high-pass energy and a low-pass energy band using a digital 

finite impulse response (FIR) filter with an order of 50. Appendix C shows the magnitude and 

the phase response of the FIR filters. A FIR filter was chosen because it does not distort the 

phase of the signal. An order of 50 allows for stop-band attenuation with minimal ripple. The 

high pass band was then amplified by 18 dB according to the 1/3 gain rule for a moderate high 

frequency hearing loss of 55 dB.  The 1/3 gain rule is used for many hearing aid prescriptive gain 

targets. Following the flat 18 dB amplification of the high frequencies, a delay value of 0, 4, 8, or 

32 ms was applied. Zero ms represented the condition with no added asynchronous delay. Four 

and 8 ms are the conditions that are similar to the delay values of DSP hearing aids, whereas 32 

ms is the condition in which a perceptual consequence of asynchronous delay is expected (Stone 

& Moore, 2003).  

 

 

Figure 3-1: Diagram of the acoustic modifications to each of the sentence stimuli. The + 18 dB gain 

and delay pathway represents the DSP hearing aid pathway. 
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The amplified delayed high passed sound file was added to both the unamplified non-

delayed high-pass sound file and the low-pass sound file to create the final output of a sound file. 

This output is similar to the acoustic pattern of sound at the eardrum of an open-fit hearing aid 

wearer. The addition of the unamplified non-delayed FIR high-pass filter and the FIR low-pass 

filter equals the input signal, thus representing the “natural pathway” of sound to the eardrum. 

The amplified delayed FIR high-pass band represents the output of the hearing aid. This 

MATLAB code allowed for manipulation of the high frequency band delay values while keeping 

the “natural pathway” and the amplification value constant for all sentence stimuli. Table 3-1 

outlines the prepared stimuli. 

Table 3-1: Gain and delay values for each of the 200 r-SPIN Low Predictability Sentences 

 

 200 r-SPIN  
Low Predictability 
Sentences 

200 r-SPIN  
Low Predictability 
Sentences 

200 r-SPIN  
Low Predictability 
Sentences 

200 r-SPIN  
Low Predictability 
Sentences 

Gain value 
> 2 kHz 

+18 dB +18 dB +18 dB +18 dB 

Delay value 
> 2 kHz 

0 ms 4 ms 8 ms 32 ms 

 

Figure 3-2 displays a series of spectrograms for the conversationally spoken recording of 

“Mr. Smith thinks about the CAP.” The top spectrogram (a) displays the original recording while 

(b) displays the same sound file after a low-pass 50-order FIR filter at 2 kHz. The third 

spectrogram (c) displays the output after a high pass 50-order FIR filter at 2 kHz. Figure 3-2 (d) 

displays the same spectrogram as (c) only a delay of 32 ms and a gain of +18 dB was applied; 

this spectrogram represents the “hearing aid” pathway of an open fit device. The bottommost 

figure (e) represents the final sound file that was used as stimuli for the study. It is the 
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combination of spectrograms (b + c + d) and represents the sound that arrives at the eardrum via 

the natural sound pathway and the hearing aid pathway. The yellow line that bisects all of the 

spectrograms marks the onset of the high frequency band in the original recording. The 32 ms 

delay onset of the high frequency band relative to the original recording is seen in figure (d). 

Note that when the non-delayed (c) and delayed high frequency bands (d) are added together, the 

gaps between syllable and words, particularly between “the” and the final word “CAP”, are 

overlaid and reduced (e).  

 

Figure 3-2: A series of spectrograms depicting the generation of the final stimuli for the 
conversationally spoken sentence, “Mr. Smith thinks about the CAP”. a) The original conversational 
recording b) the original recording with a LP FIR filter at 2 kHz applied c) the original recording with a HP 
FIR filter at 2 kHz applied d) the same sound file as (c) only with a 32 ms onset delay and a 18 dB gain 
applied, representing the hearing aid pathway of sound and d) the final sound file that served as the stimuli 
which is the combination of (b + c + d), representing the sound arriving at the ear drum with the combination 
of the natural pathway and the hearing aid pathway. Note the reduction of temporal gaps between syllables in 
(e). 
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In addition to the reduction of the gaps between words and syllables, the spectrally 

asynchronous delay also caused a jitter or echo of spectral cues such as formant transitions. 

Figure 3-3 displays the series of spectrograms for the sentence “I can’t consider the PLEA.” Just 

as the previous figure (a) is the original file, (b) is the LP energy, (c) is the HP energy, (d) is the 

HP energy with 18 dB gain and 32 ms delay, and (e) is the final stimuli constructed by adding (b 

+ c + d). The formant transition in the final word “PLEA” in Figure 3-3 (e) is somewhat blurred 

with a 32 ms spectrally asynchronous delay.  

 

Figure 3-3: A series of spectrograms depicting the generation of the final stimuli for the 
conversationally spoken sentence, “I can’t consider the PLEA”. a) The original conversational recording b) 
the original recording with a LP FIR filter at 2 kHz applied c) the original recording with a HP FIR filter at 2 
kHz applied d) the same sound file as (c) only with a 32 ms onset delay and a 18 dB gain applied, representing 
the hearing aid pathway of sound and d) the final sound file that served as the stimuli which is the 
combination of (b + c + d), representing the sound arriving at the ear drum with the combination of the 
natural pathway and the hearing aid pathway. Note the blurring of the formant transitions of “PLEA” in (e). 
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Spectrally asynchronous delays affect the voice-onset-time (VOT) of initial voiceless 

plosives. Figure 3-4 shows the 32 ms asynchronously delayed stimulus construction of the 

sentence, “We’re speaking about the TOLL.” In the original recording (a), “TOLL” has a VOT 

of 20 ms, however when a 32 ms asynchronous delay is applied the VOT is -12 ms (e). Figure 

3-5 shows the same sentence construction with a 8 ms asynchronous delay (e), making the VOT 

of “TOLL” 12 ms.  

 

Figure 3-4: A series of spectrograms depicting the generation of the final stimuli for the 
conversationally spoken sentence, “We’re speaking about the TOLL”. a) The original conversational 
recording b) the original recording with a LP FIR filter at 2 kHz applied c) the original recording with a HP 
FIR filter at 2 kHz applied d) the same sound file as (c) only with a 32 ms onset delay and a 18 dB gain 
applied, representing the hearing aid pathway of sound and d) the final sound file that served as the stimuli 
which is the combination of (b + c + d), representing the sound arriving at the ear drum with the combination 
of the natural pathway and the hearing aid pathway. Note the shorter VOT of “TOLL” in (e). The VOT in (a) 
is 20 ms while the VOT in (e) is -12 ms. 
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Figure 3-5: A series of spectrograms depicting the generation of the final stimuli for the 
conversationally spoken sentence, “We’re speaking about the TOLL”. a) The original conversational 
recording b) the original recording with a LP FIR filter at 2 kHz applied c) the original recording with a HP 
FIR filter at 2 kHz applied d) the same sound file as (c) only with a 8 ms onset delay and a 18 dB gain applied, 
representing the hearing aid pathway of sound and d) the final sound file that served as the stimuli which is 
the combination of (b + c + d), representing the sound arriving at the ear drum with the combination of the 
natural pathway and the hearing aid pathway. Note the shorter VOT of “TOLL” in (e). The VOT in (a) is 20 
ms while the VOT in (e) is 12 ms 

 

Figure 3-6 and Figure 3-7 depict the change in VOT for the key words “TANKS” and 

“STAMP”. With an 8 ms spectrally asynchronous delay the spectral burst of the /t/ within each 

word occurred at the onset of the vowel vocalization (compare (a) and (e) in both figures). Also, 

for “STAMP” in Figure 3-7, the temporal gap between the /s/ and the /t/ was shortened.  
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Figure 3-6: A series of spectrograms depicting the generation of the final stimuli for the 
conversationally spoken sentence, “Paul hopes she called about the TANKS”. a) The original conversational 
recording b) the original recording with a LP FIR filter at 2 kHz applied c) the original recording with a HP 
FIR filter at 2 kHz applied d) the same sound file as (c) only with a 8 ms onset delay and a 18 dB gain applied, 
representing the hearing aid pathway of sound and d) the final sound file that served as the stimuli which is 
the combination of (b + c + d), representing the sound arriving at the ear drum with the combination of the 
natural pathway and the hearing aid pathway. Note the shorter VOT of “TANKS” in (e).  
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Figure 3-7: A series of spectrograms depicting the generation of the final stimuli for the 
conversationally spoken sentence, “Jane was interested in the STAMP”. a) The original conversational 
recording b) the original recording with a LP FIR filter at 2 kHz applied c) the original recording with a HP 
FIR filter at 2 kHz applied d) the same sound file as (c) only with a 8 ms onset delay and a 18 dB gain applied, 
representing the hearing aid pathway of sound and d) the final sound file that served as the stimuli which is 
the combination of (b + c + d), representing the sound arriving at the ear drum with the combination of the 
natural pathway and the hearing aid pathway. Note the shorter VOT and shorter gap between the /s/ and the 
/t/ of “STAMP” in (e).  

 

The spectrally asynchronous delays modified the original recordings so that the temporal 

gaps between syllables and words were shorter, the VOT of voiceless plosives were shortened, 

and the formant transitions were jittered and weakened. Stimuli with spectral asynchronous delay 

values of 0 ms (control), 4 ms, 8 ms, and 32 ms were created to examine their impact on speech 

intelligibility of both normal-hearing and hearing-impaired listeners.  
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 Subjects 3.2.3

Based on a moderate effect size, alpha set to 0.05, it was calculated that 12-32 

participants are necessary to achieve a power level of 0.8. As the design of this experiment is a 

repeated measures ANOVA, the degree of correlation between measures has a significant impact 

on power. Because the same participants were tested under each of the 4 asynchronous delay 

conditions (0 ms, 4 ms, 8 ms, and 32 ms), some degree of correlation is expected between 

measures. Table 3-2 displays the relationship between the correlation between measures and 

sample size necessary to achieve a power of 0.08. For this study, a correlation of 0.4 was chosen, 

as it is not the weakest or strongest correlation. The correlation between measures will likely be 

higher than 0.4 as it would be expected to have consistent ranking of participants across 

conditions. Positing a correlation of 0.4 errs on the side of caution in case the data display a 

weaker correlation than expected. Therefore 25 participants in each group were enrolled in the 

main experiment examining the effects of asynchronous delay on the intelligibility of 

conversational speech.  

Table 3-2: Power analysis for Main Experiment 

Moderate effect size, alpha = 0.05, power = 0.8 

Value of Correlation Required Sample Size 

0.2 32 
0.3 29 
0.4 25 
0.5 20 
0.6 17 
0.7 12 

 

The participants were recruited from the community of the St. Louis area, as well as from 

the caseloads of the Washington University School of Medicine Adult Audiology Clinic. All 
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participants were between the ages of 21-65 years old (Average age = 57 years, sd = 7.2). Age-

related decline in auditory temporal processing has been shown to begin in the sixth decade of 

life (CHABA, 1988). Dubno, Dirks, and Morgan (1982) found that a group of subjects over the 

age of 65 with normal hearing required a higher articulation index than a group of younger 

normal hearing subjects to achieve 50% recognition of the LP r-SPIN sentences in noise. 

Therefore, the age of 65 served as the age cut-off for recruitment. The participants were excluded 

if they were not native speakers of English and/or if they reported having recent middle ear 

pathology, otologic surgery, and/or neurologic pathology. They also were excluded if they were 

current hearing aid users to control for hearing aid experience. The participants were not 

excluded on the basis of race or gender. All participants were given informed consent in 

accordance with the guidelines of the Institutional Review Board (IRB) of both Washington 

University in St. Louis, Missouri and University of Pittsburgh in Pittsburgh, Pennsylvania. 

Appendix D contains the individual demographic data for all participants of the main 

experiment. 

The hearing-impaired participants for the main experiment presented high frequency 

hearing loss consistent with candidates for open-fit amplification. Figure 3-8 displays the 

average audiometric data for the hearing-impaired participants.  All of the participants had 

speech reception thresholds that were within 8 dB of their 3-frequency pure tone average (500, 

1000, & 2000 Hz). The word recognition score of each participant was within the 90% 

confidence interval according to his or her pure tone average  (Dubno, et al., 1995).   
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Figure 3-8: Average audiometric data of the 25 hearing-impaired participants 

 

The rational behind allowing more severe hearing losses past 4 kHz results from two 

arguments. The first is the fact that the hearing loss of individuals with age-related high 

frequency sensorineural hearing loss tends to continue a downward slope past 4 kHz. Including 

these individuals will allow the data to generalize to this clinical population. Secondly, most 

open-fit hearing aids on the market tend to roll-off amplification past 3-4 kHz. This is due in part 

to the limited bandwidth of the hearing aids. With the advent of receiver in the canal (RIC) open-

fit devices, manufacturers claim that the bandwidth of amplification extends out to 6-8 kHz. 

However test box measurements obtained by researchers at the University of Pittsburgh have 

found that most RIC hearing aids do not have usable gain past 3-4.7 kHz. Table 3-3 compares 

the measured bandwidth as defined as useable gain for a flat 50 dB hearing loss of both receiver 

in the hearing aid with open fit tubing and receiver in the canal hearing aids by several 

manufacturers with the reported bandwidth of the aids by their manufacturer. Regardless of 
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whether the hearing aid is able to amplify sounds past 4 kHz, most clinical audiologists 

recommend open-fit devices for these sloping losses. Therefore, for the sake of generalizing to a 

larger clinical population, more hearing loss will be allowed past 6 kHz.  

Table 3-3: Comparison between the bandwidths of open-fit hearing aids (receiver in the hearing aid 

and receiver in the canal) as reported by its manufacturer and as measured by an independent lab at the 

University of Pittsburgh 

 

 Hearing Aid Manufacturer’s 
reported 
bandwidth 

Measured bandwidth as defined as useable gain 
for a flat 50 dB hearing loss by Hearing aid lab 
at the University of Pittsburgh 

R
ec

ei
ve

r 
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ea
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g 
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d 

(o
ve

r t
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 e
ar
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A 200-6400 Hz ~200-4400 Hz 
B 100-7200 Hz ~200-3800 Hz 
C 100-5200 Hz ~200-3700 Hz 
D 100-5800 Hz ~200-3700 Hz 
E 200-7700 Hz ~200-3200 Hz 
F 100-5600 Hz ~200-3200 Hz 
G 100-7000 Hz ~200-3200 Hz 
H 100-7150 Hz ~200-3000 Hz 
I 200-5000 Hz ~200-2500 Hz 

 

R
ec

ei
ve

r i
n 

th
e 

ca
na

l J 200-7600 Hz ~200-4200 Hz 
K 140-6000 Hz ~200-4200 Hz 
L 160-6000 Hz ~200-4200 Hz 
M 100-7000 Hz ~200-3700 Hz 
N 100-8400 Hz ~200-3600 Hz 
O 200-7350 Hz ~200-3200 Hz 
P 100-7900 Hz ~200-3000 Hz 
Q Not reported ~200-3000 Hz 

 

A second group of 25 normal-hearing listeners (average age = 54 years, sd = 11) were  

recruited for the main experiment in order to test whether normal-hearing listeners are affected 

by the introduction of asynchronous delay. The data from this group were not compared to the 

hearing-impaired group, but rather serve to answer the question of whether asynchronous delays 

have an effect on speech intelligibility of conversational speech. These participants were 
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excluded if they were not native speakers of English and/or if they reported having recent middle 

ear pathology, otologic surgery, and/or neurologic pathology. The participants were not excluded 

on the basis of race or gender. These participants had audiometric thresholds less than 20 dB 

from 250 Hz through 8 kHz in both ears and word recognition scores on the Northwestern 

University monosyllabic word lists (NU-6) were within the 90% confidence limit based on their 

pure tone average (Dubno, Lee, Matthews, Mills, & Lam, 1995).  

 Procedure 3.2.4

All participants were screened after obtaining informed consent. Only after signing the consent 

form were they considered enrolled in the study. A self-report case history questionnaire 

(Appendix B) was administered to inquire into the participant’s general health, history of hearing 

loss and/or middle ear disease, otologic surgery, and neurologic disorder. To determine auditory 

status, a standard audiometric test battery was completed. This included bilateral air and bone 

conduction threshold testing at the standard audiometric frequencies (ASHA, 1978), NS word 

recognition testing with the Auditec recording of the Northwestern University Test #6 (NU-6) 

word lists (Tillman & Carhart, 1966). All of the equipment used to perform the tests of auditory 

function was calibrated according to the appropriate ANSI standards. All testing was conducted 

in test rooms that meet the ANSI standards for maximum background noise.  

After the audiometric data were obtained, each participant’s hearing thresholds in dB HL 

were converted to dB SPL. First, the dB HL value was added to the calibrated ANSI S3.6 (1996) 

reference earphone sound pressure levels (RETSPL) to obtain the conversion from dB HL to dB 

SPL. This value reflects the dB SPL level when played in the average ear canal volume. Table 

3-4 shows the ANSI S3.6 RETSPL values for ER-3A earphones. To obtain the SPL thresholds 
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specific to the participant’s ear canal volume, the measured Real Ear to Coupler Difference 

(RECD) was added to the dB SPL. RECD is the difference in SPL between the average ear canal 

volume assumed by a 2cc coupler and the probe microphone measurement of SPL in the actual 

ear canal of a participant.  

Table 3-4: ANSI S3.6 (1996) RETSPL for ER-3A earphone 

Frequency (Hz) dB SPL in HA-2 
(with rigid tube) 

250 14 
500 5.5 
1000 0 
1500 2 
2000 3 
3000 3.5 
4000 5.5 
6000 2 
8000 0 

 

 

 

The RECD was measured by connecting the audiometric ER-3A earphone (the earphone 

used during audiometric testing) to a HA-2 coupler in Frye 7000 Hearing Aid Analyzer. After 

plugging the input jack of the ER-3A earphones into the Frye 7000, the system generated a 

frequency sweep signal to capture the output of the ER-3A earphone across frequencies. Next, 

the Frye 7000’s probe microphone was inserted in the participant’s ear canal. The ER-3A 

earphone was inserted into the participant’s ear over the probe microphone, taking care that the 

probe tip was past the depth of the insert earphone. Again, the system generated a pure-tone 

sweep while the probe microphone measured the output of the earphone in the ear.  The 

difference in dB between these two measures is the RECD. Table 3-5 shows how the RECD is 

added to a participant’s thresholds in dB HL and the RETSPL value to obtain that participant’s 
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thresholds in dB SPL. Calculation of each individual’s hearing threshold in dB SPL was the first 

step in ensuring audibility of the stimuli used for the experiment.  

Table 3-5: An example the calculation of a participant’s hearing threshold in dB SPL 

Frequency 250 500 1000 2000 3000 4000 6000 8000 

Hearing threshold in dB HL  5 5 20 35 40 45 50 65 

+ RETSPL  14 5.5 0 3 3.5 5.5 2 0 

+ RECD = -1 -2 1 5 6 10 7 6 

Hearing threshold in dB SPL 18 8.5 21 43 49.5 60.5 59 71 

 

 

The presentation level of the stimuli was determined in the following manner. First, prior 

to the presence of any participant, the “original calibration noise” soundfile was modified with 

the MATLAB algorithm that applied 18 dB of gain above 2 kHz. This file was saved as “gain 

calibration noise” on the computer. It was used to verify the audibility of high frequency signals 

for each hearing-impaired participant in the main-experiment. Also, the audiometer attenuator 

was adjusted so that the time-weighted output of the ER-2 earphone peaked at 60 dB SPL on 

probe microphone measurements for the “original calibration noise” as described in the pre-

experiment.  

During calibration for the hearing-impaired listeners, a Frye Fonix 7000 probe 

microphone was threaded into the participant’s ear canal. The participant’s hearing thresholds in 

dB SPL were entered in the Fonix system. The real ear system was set up so that it was 

measuring an SPL-o-gram with the stimulus turned off. An ER-2 earphone was inserted into the 

participant’s ear over the probe microphone. For the hearing-impaired listeners, the “gain 
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calibration file” was played at the audiometer attenuator setting determined earlier. The Fonix 

7000 displayed the output of the ER-2 earphone playing the “gain calibration file”. The output 

measure was examined, verifying that the output at all frequencies from 250-4 kHz closely 

matched NAL-R target for 60 dB input. The audiometer attenuator was adjusted in 2 dB steps 

until audibility was achieved. Figure 3-9 displays the average NAL-R target for 60 dB input and 

the average output of the earphone as measured by the probe microphone. The final attenuator 

setting was the presentation level for the listening task. The probe microphone was then removed 

from the hearing-impaired participant’s ear, and the same calibration measurements were made 

on the opposite ear. Once the presentation levels were determined, the probe microphone was 

removed from the participant’s ear, and the experimental listening task began. 

 

Figure 3-9: Measured Real Ear SPL Output in response to the “gain calibration filr” and NAL-R 

target for 60 dB input for the (a) right ear and (b) left ear 

Eight-hundred sentences were presented randomly to each participant using SuperLab 4.0 

(Cedrus Corporation) software on a computer connected to a Grason-Stadler 61 audiometer. The 

800 processed sentences represent the 4 conditions of simulated high frequency delay. Each set 

of 200 conversational sentences had asynchronous delay values of 0 ms (control condition), 4 

ms, 8 ms, and 32 ms. These 800 sentences were presented randomly to 25 hearing-impaired 

participants and 25 normal-hearing listeners, thereby reducing a condition presentation order 
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effect. The possibility of a learning effect from repeating the same 200 sentences for each of the 

four conditions is slim as Kalikow and colleagues (1977) found negligible learning effects for the 

low predictability sentences. Regardless, the data were analyzed to ensure that there was not a 

learning effect from sentence repetition.  

Each participant was seated in a sound treated room with ER-1 insert earphones placed in 

each ear. A microphone mounted in front of the participant recorded his or her responses. The 

participant was instructed to “Listen carefully to the following sentences. Repeat each sentence 

immediately after you hear it. Please speak clearly into the microphone. The listening task is 

divided into 16 blocks of 50 sentences. You will be given a break between each block. If you 

need a break sooner for any reason, please speak up and let me know.” The participants were 

asked to repeat the entire sentence to prevent listeners from using all of their attention resources 

on the final key word.  

 Data Analysis 3.2.5

The recorded data from each participant in the main-experiment were presented to a normal-

hearing listener to judge the last word (key word) being spoken in each of the 800 sentences. The 

judge was given the answer keys containing the 800 correct key words in the order of 

presentation for each participant. The judge marked whether the participant got each key word 

correct or incorrect. If the participant was incorrect, the judge also wrote down the word that 

he/she heard the participant say. The judge was blinded to the conditions, thus removing tester 

bias. The percent correct key word identification and the identification errors were extracted 

from the recordings in this manner for all of the sentences spoken by each participant.  
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4.0  RESULTS 

4.1 PRE-EXPERIMENT: CLEAR-SPEECH VS. CONVERSATIONALLY SPOKEN 

SPEECH 

The conversationally spoken, clearly spoken, and the original recording of each of the 200 r-

SPIN sentences were analyzed in Adobe Audition to calculate speaking rate in words per minute 

(wpm) and syllable per second (syl/s), vowel duration of the final key word, and the voiceless 

voice onset time (VOT) of the key word.  All data were analyzed with a paired t-test for 

significant differences and the descriptive data are listed in Table 4-1 

Table 4-1: Acoustic differences between Clear, Conversational (same male speaker) and Original 

recordings (different male speaker) of the R-SPIN LP sentences (Bilger et al., 1984). 

  

 

As displayed in Table 4-1, the speaking rate of the conversational recordings was 

significantly faster than both the clear recordings and original recordings (p<0.01). The 



 89 

conversational recordings were nearly twice as fast as the clear speech recordings (270 wpm vs. 

144 wpm). Also, the mean voiceless VOT for the conversational recordings was significantly 

shorter than both the clear and original recordings (p<0.01) being roughly one third of that found 

for the clear recordings (95 ms vs. 33 ms). The mean voiceless VOT for the clear and original 

recordings did not significantly differ (p<0.01). Figure 4-1 displays a spectrogram demonstrating 

the difference in VOT of the word “tanks” between clear (top; 62 ms) and conversational 

(bottom; 27 ms) speech. As with many of the conversationally spoken words with a voiceless 

plosive in the word-initial position, the burst and aspiration of the initial consonant /t/ in tank 

was reduced.  

 

 

 Figure 4-1: Spectrogram demonstrating the difference in VOT of the word “tanks” between clear 

(top; 62 ms) and conversational (bottom; 27 ms) speech.  

 For plosives in word-final position, the conversational recordings exhibited weaker 

bursts and releases as compared to the clear speech recording. Figure 4-2 and Figure 4-3 show 

spectrograms for two sentences with plosives in the word-final position of the final key word. In 

Figure 4-2, the burst in the /p/ of the word “sheep” in the conversational recording is weaker and 
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the aspiration is shorter than its clear speech counterpart. However, in Figure 4-3, the release of 

the /p/ in “sap” is omitted in the conversationally spoken version of the sentence.  

 

 

Figure 4-2: Spectrogram demonstrating the intensity and durational differences in the release of the 

final plosive /p/ of the word “sheep” between clear (top) and conversational speech (bottom).   

 

Figure 4-3: Spectrogram demonstrating the intensity and durational differences in the release of the 

final plosive /p/ of the word “sap” between clear (top) and conversational speech (bottom). Notice the 

omission of the final plosive release.    
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Vowel duration was significantly shorter in the conversationally recorded speech than 

both the clear speech and the original recordings (p < 0.01). The spectrogram in Figure 4-4 

demonstrates the vowel duration difference of the key word “sand” between the clear and 

conversational recordings. Formant transitions were shorter as a consequence of the 

conversational speech’s faster articulation rate and shorter vowel durations as shown in Figure 

4-5.  

 

Figure 4-4: Spectrogram demonstrating the vowel duration difference of the word “sand” between 

clear (top, 379 ms) and conversational speech (bottom, 200 ms)  

 

Figure 4-5: Spectrogram demonstrating the difference in the formant transitions for the /r/ in crown 

between clear (top) and conversational (bottom) speech 
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4.2 PRE-EXPERIMENT: INTELLIGIBILITY OF CONVERSATIONAL R-SPIN 

RECORDINGS 

The data from the 15 young normal-hearing participants of the Pre-Experiment were plotted as 

percent correct final key-word identification. The average score for final key-word identification 

was 98% correct with a standard deviation of 1.33. Therefore, the conversationally spoken 

recorded r-SPIN sentences were acoustically different from clear speech and the original r-SPIN 

recording yet intelligible by normal-hearing listeners. 

4.3  MAIN EXPERIMENT: EFFECT OF PRESENTATION ORDER 

 The data from both the 25 normal hearing and the 25 hearing-impaired participants were plotted 

separately as percent correct key word identification as a function of presentation order for each 

set of 200 sentences. The data sets were each analyzed with one-way ANOVA to see if there is a 

significant main effect of presentation order. Due to the previous reports of negligible learning 

effect for the low predictability sentences and the randomized experimental design significant 

results were not anticipated. For the normal-hearing group, the results of the ANOVA found a 

significant main effect for presentation order (F(3, 72) = 8.695, p < 0.05). Post hoc analysis using 

a Bonferroni correction factor revealed that only the score from the first presentation was 

significantly different at α < 0.05 from the following three presentations. A Bonferroni was 

applied in order to control for a type I error (incorrectly identifying an order effect when there is 

in fact no order effect). Figure 4-6 displays the normal-hearing group mean score and standard 

deviation for each presentation order. The average score for presentation order ranged from 
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95.86 at the first presentation to 97.12 at the third presentation. Although the difference in the 

percent correct score between the first presentation and the subsequent presentations of each 

sentence is minimal (roughly a 1.25 percentage point difference), the difference was found to be 

significant at p < 0.05 due to the small variance of the data. However, given the low 

predictability nature of key word in each sentences, the fact in that all of the sentences and 

experimental conditions were randomly presented to each listener in one block, and the high 

accuracy in identification (ceiling effect) of key words in sentence by normal hearing listeners, it 

was decided that the learning effect was negligible.  

 

Figure 4-6: The average percent correct key word identification of the 25 normal hearing 

participants plotted as a function of presentation order (combined across all delay conditions). Only the first 

presentation was significantly different from the other presentations at α < 0.05. 

 

The results of the ANOVA for the hearing-impaired group also revealed a significant 

main effect for presentation order (F(3, 72) = 5.103, p < 0.05). Post hoc analysis using a 

Bonferroni correction factor revealed that only the score between the first and last presentation 

was significantly different at α < 0.05. Figure 4-7 displays the hearing-impaired group mean 

score and standard deviation for each presentation order. The average score for presentation 

order ranged from 87.26 at the first presentation to 89.16 at the final presentation. Again, given 
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the previous research and the consideration that all of the experimental conditions were 

presented in random order, it was decided that there was negligible learning effect among the 

hearing-impaired participants. 

 

Figure 4-7: The average percent correct key word identification of the 25 hearing-impaired 

participants plotted as a function of presentation order (combined across all delay conditions). Only the 

difference between the first and last presentation was significantly different at α < 0.05. 

4.4 MAIN EXPERIMENT: EFFECT OF ASYNCHRONOUS DELAY FOR NORMAL-

HEARING LISTENERS 

The data from the group of 25 normal-hearing listeners were plotted as percent correct key word 

identification as a function of the four conditions (0 ms, 5 ms, 10, ms, and 30 ms). Repeated 

measures ANOVA (subjects by delay condition) was performed to test for the main effect of 

asynchronous delay condition. In a repeated measures design, the chance of making a type I error 

(erroneously declaring a difference) increases with each comparison. In order to control the 

overall type I error rate, it was necessary to decrease the value of alpha for each of the four 
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comparisons. However as the type I error rate is minimized, the chances of making a type II error 

increases. It is important to examine the severity of each error type prior to making the decision 

to control the type I error with the use of a Bonferroni to adjust the level of alpha for each 

comparison. Table 4-2 lists the possible true outcomes of the study and the errors associated with 

each outcome. The severity of the error is listed in the final column. The severity of the type II 

error  (incorrectly declaring no difference between varying amounts of asynchronous delay) is 

much higher than that of the type I error. In order to tightly control the type II error rate, the 

Bonferroni correction factor was not applied.  

Table 4-2: Analysis of the severity of the error for the research outcome 

Possible True 
outcomes 

Consequence      Potential Errors Erroneous 
conclusion 

Severity of error 

Type I Type II 

% correct on 
SPIN test 
without delay = 
% correct on 
SPIN test with 
delay 

Suggest that 
asynchronous delays 
up to 30 ms have no 
effect on hearing 
impaired listener’s 
ability to understand 
conversational 
speech 

Incorrectly declared 
a difference 
between SPIN 
scores 

Cannot make type 
II error when the 
true outcome is no 
difference 
between scores 

Type I error: 
Asynchronous 
delay has an effect 
on hearing impaired 
listeners speech 
perception and 
needs to be 
controlled in DSP 
circuits. 
 

Severity is low 
because it does 
not matter 
whether delays 
are controlled or 
not.  

% correct on 
SPIN test 
without delay ≠ 
% correct on 
SPIN test with 
delay 

Suggest that 
asynchronous delays 
affect SPIN scores 
and the amount of 
delay needs to be 
tightly controlled in 
DSP circuits. 

Cannot make a type 
I error when the true 
outcome reports a 
difference between 
scores. 

Incorrectly 
declared no 
difference 
between groups. 

Type II error: 
Asynchronous 
delay up to 30 ms 
has no effect on 
hearing impaired 
listeners speech 
perception. 
 

Severity is high 
because 
asynchronous 
delays do need to 
be controlled. The 
delay has a 
negative effect on 
listeners’ speech 
perception. 

 

 Figure 4-8 displays the results of the effect of delay condition on key word identification 

by normal-hearing listeners. The results of the ANOVA for the normal hearing group revealed a 

significant main effect for delay condition (F(3, 72) = 2.852, p = 0.043). Post hoc analysis 

revealed that only the score between the 4 ms and the 32 ms condition was significantly different 
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at α < 0.05. The average score ranged between 96.32 (32 ms condition) and 97.14 (4 ms 

condition). However, this slight difference was found to be statistically significant due to the low 

variability among scores.  

 

Figure 4-8: The average percent key word identification by normal-hearing listeners as a function of 

spectrally asynchronous delay. Only the difference between the 4 ms and the 32 ms condition was found to be 

significant at α < 0.05. 

4.5 MAIN EXPERIMENT: EFFECT OF ASYNCHRONOUS DELAY FOR 

HEARING-IMPAIRED LISTENERS 

The data from the group of 25 hearing-impaired listeners were plotted as percent correct key 

word identification as a function of the four conditions (0 ms, 4 ms, 8, ms, and 32 ms). Repeated 

measures ANOVA (subjects by delay condition) was performed to test for the main effect of 

asynchronous delay condition. As with the normal-hearing data, a Bonferroni correction factor 

was not applied in order to control the type II error rate. Figure 4-9 displays the effect of each 

delay condition on key word identification for the group of hearing-impaired listeners. The 
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average values were 89.74%, 88.66%, 88.36%, and 85.36% for the 0, 4, 8, and 32 ms conditions 

respectively. Appendix E displays the individual data for the hearing-impaired listeners with the 

individuals with a greater than 5% decrease in score with increasing delay values highlighted. A 

main effect for the asynchronous delay condition was found (F(3, 72) = 19.788, p < 0.05).  A 

post-hoc analysis revealed that only the difference between the 4 ms and the 8 ms condition was 

not significant; all other differences were significant at α < 0.05.  

 

Figure 4-9: The effect of delay condition on key-word identification for hearing-impaired listeners. 

All differences between conditions with the exception of the difference between 4 ms and 8 ms were found to 

be significant at α < 0.05. 



 98 

5.0  DISCUSSION 

The results of the Pre-Experiment determined that the conversationally recorded r-SPIN low 

predictability sentences were acoustically different from both clear speech and the original 

commercially available r-SPIN recordings (Bilger et al., 1984, Cosmos Distributing, Inc.), yet 

intelligible by normal-hearing listeners. These conversationally spoken recordings were used to 

better represent “real world” speech acoustics and to reflect interactions between signal 

processing algorithms and the rapidly changing speech acoustics.  

The Main experiment used these 200 conversationally recorded r-SPIN sentences 

repeated for each asynchronous delay condition (0 ms, 4 ms, 8 ms, and 32 ms). Although all 800 

sentences were presented in random order to each participant and previous research reported no 

learning effect of the low predictability r-SPIN sentences (Kalikow et al., 1977), the data were 

analyzed to determine if there was an effect of presentation order. Although there was a 

statistically significant difference for both the normal-hearing and hearing-impaired group of 

listeners for which the key word identification of the first presentation was slightly poorer than 

the last presentation, the learning effect was deemed negligible due to the randomized 

experimental design, the small effect size, and previous research finding minimal learning effect 

with low-predictability sentences.  
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5.1 NORMAL-HEARING LISTENERS PERCEPTION OF SPECTRALLY 

ASYNCHRONOUS DELAYS 

Normal-hearing listeners were essentially unaffected by spectrally asynchronous delays up to 32 

ms. The only statistically significant difference found was between the 4 ms and the 32 ms delay 

condition, and the difference was roughly equal to an additional 1.5 correct key word 

identification out of 200 sentences or a less than a 1 percentage point change in score. It appears 

that normal-hearing listeners were either able to ignore the spectro-temporal distortion and/or use 

other acoustic cues to correctly identify the key word. For example, previous research has found 

that normal-hearing listeners give greater perceptual weight to rapid formant transitions than to 

other acoustic cues when identifying consonants (Lindholm et. al., 1988; Hedrick & Jesteadt, 

1996; Hedrick & Younger, 2001, 2007). With the delays occurring above 2 kHz, the F1 formant 

transitions were unaltered, while most of the F2 and F3 formant transitions were left intact albeit 

delayed in time. Normal-hearing listeners may have been able to use these formant transitions 

and other redundant acoustic cues such as spectro-intensity cues to correctly identify key words 

despite the delay of signals above 2 kHz up to 32 ms. Another consideration would be that the 

normal-hearing listeners were able to suppress or ignore the acoustic delay above 2 kHz to take 

advantage of the “open-ear” or the unaltered non-hearing aid pathway of sound.  
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5.2 HEARING-IMPAIRED LISTENERS PERCEPTION OF SPECTRALLY 

ASYNCHRONOUS DELAYS 

Hearing-impaired listeners performed well on the key word identification of the r-SPIN LP 

conversationally spoken sentences with an average score for the control condition (zero delay) of 

89.74 with a standard deviation of 6.53. This score isn’t surprising considering that the task was 

performed in quiet and that audibility was tightly controlled by the inclusion criteria (no greater 

than a moderate loss from 2-4 kHz) and through the application of appropriate gain to meet the 

NAL-NL1 prescribed SPL output target based upon each participant’s hearing thresholds. 

Hearing-impaired listeners were adversely affected by a 32 ms delay to the spectrum above 2 

kHz. These results confirm previous research that found that perceptual differences were found 

with frequency dependent delay greater than 24 ms (Stone and Moore, 2003). The difference 

between the control condition and the shorter delay conditions of 4 and 8 ms was also 

statistically significant, albeit it was only a slight degradation in performance (an average 

difference of only 1 percentage point between the conditions). It appears that once audibility is 

accounted for, hearing-impaired listeners are tolerant of spectrally asynchronous delays up to 8 

ms, but then are adversely affected by 32 ms in quiet listening situations. Given that there is a 

negative consequence of spectrally asynchronous delay on the speech perception abilities of 

hearing-impaired listeners, hearing aid manufacturers should be conscious of the speed of 

hearing aid digital processing.   

It is possible that the hearing-impaired listeners, like the normal-hearing listeners relied 

somewhat on the formant transitions that were held intact despite the delay conditions for correct 

key word identification. When the individual data are examined (Appendix E), it appears that 

some listeners are tolerant of the asynchronous delay similar to that of normal-hearing listeners. 
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When the hearing threshold data of these listeners are examined (Appendix D), it seems that the 

hearing-impaired listeners with milder losses are more tolerate of the delay conditions. As for the 

other listeners who were affected by the asynchronous delay, perhaps they rely on other speech 

perceptual cues. Studies have shown that hearing-impaired listeners rely less on formant 

transitions and more on spectral shape and temporal properties of speech for phonemic 

identification (Lindholm et al., 1988; Hedrick and Younger 2007). Listeners with mild-moderate 

sensorineural loss can perceive timing cues such as voice onset time (VOT) and spectro-temporal 

cues such as envelope onset asynchrony (EOA) similar to those with normal hearing (Johnson et 

al., 1984; Ortmann et al., 2010). If hearing-impaired listeners are relying on these particular 

spectro-temporal cues for phonemic and subsequently word identification, then their perceptual 

performance is more likely to be affected by spectrally asynchronous delays as these delays blur 

the onset of voiceless plosives. This hypothesis was supported by significantly poorer 

performance in the conditions with spectrally asynchronous delay by hearing-impaired listeners, 

but not by normal-hearing listeners.  

Hedrick and Younger (2007) demonstrated that hearing-impaired listeners rely even less 

on formant transitions when performing in conditions with background noise or reverberation. It 

would be assumed that in background noise, these listeners would rely more on spectro-temporal 

cues such as VOT or EOA in these conditions. It would be of interest to measure the 

intelligibility of the conversational sentences with the same delay conditions in background noise 

and/or reverberation. It is hypothesized that because listeners are relying more on gap and 

spectro-temporal distinctions, they would be more susceptible to shorter asynchronous delay 

values.  
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APPENDIX A 

REVISED SPEECH PERCEPTION IN NOISE (R-SPIN) LOW PREDICTABILITY 

SENTENCES 

 

 

List 1 List 2 
1. Miss White won’t think about the CRACK. 1. Miss Black thought about the LAP. 
2. He wouldn’t think about the RAG. 2. Miss Black would consider the BONE. 
3. The old man talked about the LUNGS. 3. Bob could have known about the SPOON. 
4. I was considering the CROOK. 4. He wants to talk about the RISK. 
5. Bill might discuss the FOAM. 5. He heard they called about the LANES. 
6. Nancy didn’t discuss the SKIRT. 6. She has known about the DRUG. 
7. Bob has discussed the SPLASH 7. I want to speak about the CRASH. 
8. Ruth hopes he heard about the HIPS. 8. I should have considered the MAP. 
9. She wants to talk about the CREW. 9. Ruth must have known about the PIE. 
10. They had a problem with the CLIFF. 10. The man should discuss the OX. 
11. You heard Jane called about the VAN. 11. They heard I called about the PET. 
12. We could consider the FEAST. 12. Bill cannot consider the DEN. 
13. Bill heard we asked about the HOST. 13. She hopes Jane called about the CALF. 
14. I had not thought about the GROWL.  14. Jane has a problem with the COIN. 
15. He should know about the HUT. 15. Paul hopes she called about the TANKS. 
16. I’m glad you heard about the BEND.  16. The girl talked about the GIN. 
17. You’re talking about the POND.  17. Mary should think about the SWORD. 
18. Nancy had considered the SLEEVES. 18. Ruth could have discussed the WITS. 
19. He can’t consider the CRIB.  19. You had a problem with a BLUSH. 
20. Tom discussed the HAY. 20. We have discussed the STEAM. 
21. She’s glad Jane asked about the DRAIN. 21. Tom is considering the CLOCK. 
22. Bill hopes Paul heard about the MIST. 22. You should not speak about the BRAIDS. 
23. We’re speaking about the TOLL. 23. Peter should speak about the MUGS. 
24. We spoke about the KNOB. 24. He has a problem with the OATH. 
25. I’ve spoken about the PILE. 25. Tom won’t consider the SILK. 
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List 3 List 4 
1. Mr. White discussed the CRUISE. 1. Mary had considered the SPRAY. 
2. Miss White thinks about the TEA. 2. The woman talked about the FROGS. 
3. He is thinking about the ROAR. 3. Miss Brown will speak about the GRIN. 
4. She’s spoken about the BOMB. 4. Bill can’t have considered the WHEELS. 
5. You want to talk about the DITCH. 5. Mr. Smith spoke about the AID. 
6. We’re discussing the SHEETS. 6. He hears she asked about the DECK. 
7. Betty has considered the BARK. 7. You want to think about the DIME. 
8. Tom will discuss the SWAN. 8. You’ve considered the SEEDS. 
9. You’d been considering the GEESE. 9. Ruth’s grandmother discussed the 

BROOM. 
10. They were interested in the STRAP. 10. Miss Smith considered the SCARE. 
11. He could discuss the BREAD. 11. Peter has considered the MAT. 
12. Jane hopes Ruth asked about the STRIPES. 12. The old man considered the KICK. 
13. Paul spoke about the PORK. 13. Paul could not consider the RIM. 
14. Mr. Smith thinks about the CAP. 14. I’ve been considering the CROWN. 
15. We are speaking about the PRIZE. 15. We’ve spoken about the TRUCK. 
16. Harry had thought about the LOGS. 16. Mary could not discuss the TACK. 
17. Bob could consider the POLE. 17. Harry might consider the BEEF. 
18. Ruth has a problem with the JOINTS. 18. We’re glad Bill heard about the ASH. 
19. He is considering the THROAT. 19. Nancy should consider the FIST. 
20. We can’t consider the WHEAT.  20. They did not discuss the SCREEN. 
21. The man spoke about the CLUE. 21. The old man thinks about the MAST. 
22. David has discussed the DENT. 22. Paul wants to speak about the BUGS. 
23. Bill heard Tom called about the COACH.  23. You’re glad she called about the BOWL. 
24. Jane has spoken about the CHEST. 24. Miss Black could have discussed the 

ROPE. 
25. Mr. White spoke about the FIRM.  25. I hope PAUL asked about the MATE. 
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List 5 List 6 
1. Betty knew about the NAP 1. You were considering the GANG. 
2. The girl should consider the FLAME.  2. The boy had considered the MINK. 
3. They heard I asked about the BET. 3. He wants to know about the RIB. 
4. Mary knows about the RUG. 4. She might have discussed the APE. 
5. He was interested in the HEDGE. 5. The old woman discussed the THIEF. 
6. Jane did not speak about the SLICE. 6. You were interested in the SCREAM. 
7. Mr. Brown can’t discuss the SLOT. 7. We hear they asked about the SHED. 
8. Paul can’t discuss the WAX. 8. I haven’t discussed the SPONGE. 
9. Miss Brown shouldn’t discuss the SAND. 9. Ruth will consider the HERD. 
10. David might consider the FUN.  10. The old man discussed the DIVE. 
11. She wants to speak about the ANT.  11. The class should consider the FLOOD. 
12. He hasn’t considered the DART. 12. I’m talking about the BENCH. 
13. We’ve been discussing the CRATES. 13. Paul has discussed the LAMP. 
14. We’ve been thinking about the FAN. 14. You knew about the CLIP. 
15. Jane didn’t think about the BROOK. 15. She might consider the POOL. 
16. Betty can’t consider the GRIEF. 16. Bob was considering the CLERK. 
17. Harry will consider the TRAIL. 17. The man knew about the SPY. 
18. Tom is talking about the FEE. 18. The class is discussing the WRIST. 
19. Tom had spoken about the PILL. 19. They hoped he heard about the RENT. 
20. Tom has been discussing the BEADS. 20. Mr. White spoke about the JAIL. 
21. Tom could have though about the SPORT. 21. Miss Brown might consider the COAST. 
22. Mary can’t consider the TIDE. 22. Bill didn’t discuss the HEN. 
23. He hopes Tom asked about the BAR. 23. The boy might consider the TRAP. 
24. We could discuss the DUST. 24. He should consider the ROAST. 
25. Paul hopes we heard about the LOOT. 25. Miss Brown spoke about the CAVE. 
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List 7 List 8 
1. We’re considering the BROW. 1. Bob heard Paul called about the STRIPS. 
2. I am thinking about the KNIFE. 2. Paul has a problem with the BELT. 
3. They’ve considered the SHEEP. 3. They knew about the FUR. 
4. He’s glad we heard about the SKUNK. 4. We’re glad Ann asked about the FUDGE. 
5. The girl should not discuss the GOWN. 5. Jane was interested in the STAMP. 
6. Mr. Smith knew about the BAY.  6. Miss White would consider the MOLD. 
7. We did not discuss the SHOCK. 7. They want to know about the AIM. 
8. Mr. Black has discussed the CARDS. 8. The woman discussed the GRAIN. 
9. Mr. Black considered the FLEET. 9. You hope they asked about the VEST. 
10. We are considering the CHEERS.  10. We should have considered the JUICE. 
11. Sue was interested in the BRUISE. 11. The woman considered the NOTCH. 
12. Miss. Smith couldn’t discuss the ROW. 12. The woman knew about the LID. 
13. I am discussing the TASK. 13. Jane wants to speak about the CHIP. 
14. Paul should know about the NET. 14. Bob should not consider the MICE. 
15. Miss Smith might consider the SHELL.  15. Ruth hopes she called about the JUNK. 
16. You cannot have discussed the GREASE. 16. I can’t consider the PLEA. 
17. I did not know about the CHUNKS. 17. Paul was interested in the SAP. 
18. I should have known about the GUM.  18. He’s glad you called about the JAR. 
19. Mary hasn’t discussed the BLADE. 19. Miss Smith knows about the TUB. 
20. Ruth has discussed the PEG. 20. The man could not discuss the MOUSE. 
21. We have not thought about the HINT. 21. Ann was interested in the BREATH. 
22. The old man discussed the YELL. 22. You’re glad they heard about the 

SLAVE. 
23. They’re glad we heard about the TRACK. 23. The man could consider the SPOOL. 
24. The boy can’t talk about the THORNS. 24. Peter knows about the RAFT. 
25. Bill won’t consider the BRAT. 25. She hears Bob asked about the CORK. 
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APPENDIX B 

CASE HISTORY FORM 

Read the following questions and circle the appropriate answer: 

1.  How old are you?   ___________________________________________________________ 
 
2.  Are you in good general health?      Yes              No 
 If you answered no, please explain your medical conditions:  
______________________________________________________________________________
______________________________________________________________________________ 
 
3.  Do you feel that you have a hearing loss?     Yes            No 
      If yes, do you feel that one ear is better than the other?   Yes      No 
  If so, which ear is your better ear?   Right         Left 
 
4.  Are you a native speaker of English?        Yes         No 
 
5.  Have you had any recent ear infections, drainage, or pain in your ears?    Yes       No 
 If you answered yes, please give the date of the ear infection and when and how it was 
resolved: ______________________________________________________________________ 
______________________________________________________________________________ 
 
6.  Have you had any surgeries performed on your ears?        Yes         No 
 If yes, please explain: ______________________________________________________ 
______________________________________________________________________________ 
 
7.  Have you ever been diagnosed with any neurologic disorder (i.e., brain tumor, stroke, 
Parkinson’s disease, etc.)?   Yes   No 
 If yes, please explain: ______________________________________________________ 
______________________________________________________________________________ 
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APPENDIX C
FIR FILTER REPSONSE 

 

Figure 5-1: Graphs depict the magnitude and phase response for the FIR high pass (top) and low 

pass (bottom) filter used to create the delay conditions. 
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APPENDIX D 

DEMOGRAPHIC INFORMATION FOR THE  
PARTIPANTS OF THE MAIN EXPERIMENT  
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Table 5-1: Main experiment normal-hearing listeners’ demographics (age and hearing thresholds) 

  Frequency in Hz 

 Age Ear 250 500 1000 2000 3000 4000 6000 8000 
NH1 21 RE 15 10 10 10 5 5 5 5 

LE 15 15 10 15 10 5 5 10 
NH2 46 RE 15 15 10 5 15 10 10 0 

LE 10 5 10 5 15 10 10 0 
NH3 61 RE 10 15 15 15 15 15 15 15 

LE 10 15 15 15 15 15 15 15 
NH4 64 RE 20 15 5 5 10 10 20 20 

LE 15 10 10 15 20 20 10 15 
NH5 61 RE 20 15 15 10 5 10 15 15 

LE 15 15 20 15 15 15 10 15 
NH6 61 RE 10 10 15 10 5 20 20 20 

LE 10 10 10 15 5 20 20 15 
NH7 65 RE 5 5 5 10 10 10 20 15 

LE 5 5 0 10 20 20 20 20 
NH8 59 RE 10 10 15 15 20 20 20 25 

LE 10 10 20 15 15 20 20 20 
NH9 65 RE 15 15 15 15 15 20 15 20 

LE 15 15 15 15 15 15 15 10 
NH10 62 RE 10 15 15 10 15 10 10 10 

LE 15 15 15 15 10 15 15 10 
NH11 63 RE 15 10 15 15 15 15 15 20 

LE 15 10 15 5 15 15 10 15 
NH12 54 RE 15 10 10 10 5 5 10 10 

LE 10 10 10 10 5 10 10 5 
NH13 55 RE 15 10 5 10 15 15 15 15 

LE 10 10 5 10 15 10 15 10 
NH14 55 RE 10 10 5 0 10 10 10 15 

LE 10 5 5 0 5 10 10 15 
NH15 54 RE 10 10 15 15 20 15 15 20 

LE 15 10 15 10 20 15 15 15 
NH16 56 RE 15 10 10 10 5 5 10 10 

LE 15 15 10 5 5 5 10 15 
NH17 61 RE 20 15 15 10 15 15 10 15 

LE 20 15 15 10 15 15 10 15 
NH18 59 RE 15 15 15 10 15 10 15 15 

LE 15 15 10 15 15 10 15 10 
NH19 56 RE 5 10 10 0 10 15 15 15 

LE 5 5 5 5 10 15 15 15 
NH20 54 RE 15 10 5 5 5 15 10 10 

LE 15 10 5 0 5 10 15 15 
NH21 42 RE 15 10 10 10 10 10 5 5 

LE 15 10 5 10 15 5 10 5 
NH22 37 RE 10 10 5 5 5 5 0 0 

LE 10 10 5 5 0 5 0 0 
NH23 28 RE 10 5 0 5 0 0 5 0 

LE 5 0 0 5 0 0 5 0 
NH24 51 RE 10 10 10 10 10 15 15 15 

LE 10 10 10 15 10 15 10 5 
NH25 39 RE 10 10 0 0 5 10 5 0 

LE 5 5 0 0 5 5 5 0 
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Table 5-2: Main experiment hearing-impaired listeners’ demographics (age and hearing thresholds) 

  Frequency in Hz 

 Age Ear 250 500 1000 2000 3000 4000 6000 8000 
HI1 

61 

RE 15 15 15 30 55 55 50 45 
LE 15 15 10 40 55 60 40 35 

HI2 
62 

RE 15 20 20 35 50 40 25 30 
LE 20 15 20 50 45 50 30 40 

HI3 

64 

RE 20 20 20 25 55 65 75 65 
LE 20 15 20 25 55 60 70 75 

HI4 
63 

RE 20 15 25 25 30 35 30 35 
LE 20 20 20 20 25 30 35 40 

HI5 

43 

RE 15 15 15 30 60 60 55 40 
LE 20 20 25 40 60 60 60 55 

HI6 
49 

RE 5 5 15 25 30 30 40 55 
LE 5 5 15 30 40 55 55 60 

HI7 

65 

RE 20 20 25 50 60 55 50 45 
LE 20 20 30 45 60 60 55 45 

HI8 
64 

RE 15 20 15 30 55 35 25 15 
LE 20 20 20 45 50 40 35 25 

HI9 

61 

RE 15 20 10 30 30 35 50 50 
LE 10 10 10 20 35 50 50 55 

HI10 
58 

RE 15 10 10 35 65 60 50 50 
LE 10 5 5 45 55 60 60 40 

HI11 

44 

RE 5 15 20 30 40 50 65 60 
LE 5 15 20 35 45 50 60 60 

HI12 
55 

RE 15 20 20 25 35 40 45 50 
LE 10 15 20 25 30 35 40 45 

HI13 

65 

RE 15 20 25 35 35 45 50 50 
LE 15 20 30 40 35 45 50 55 

HI14 
53 

RE 20 20 25 30 30 40 35 35 
LE 20 15 20 25 30 30 30 30 

HI15 

60 

RE 10 10 10 30 55 55 60 70 
LE 20 15 35 45 55 60 55 75 

HI16 
54 

RE 30 25 35 40 50 55 70 70 
LE 30 25 35 35 45 60 65 65 

HI17 

61 

RE 10 5 0 20 55 55 50 50 
LE 10 5 10 45 60 65 70 65 

HI18 
56 

RE 15 20 25 35 35 45 35 30 
LE 15 15 20 35 30 40 40 30 

HI19 

65 

RE 20 15 20 35 40 55 55 65 
LE 20 20 25 40 45 55 60 70 

HI20 
59 

RE 20 20 10 25 55 50 45 60 
LE 15 15 15 25 35 35 35 50 

HI21 

44 

RE 20 30 45 50 55 50 50 40 
LE 20 30 40 50 55 55 50 30 

HI22 
49 

RE 10 10 15 30 55 65 75 75 
LE 10 10 15 15 50 70 70 80 

HI23 

51 

RE 15 15 15 25 45 45 30 20 
LE 15 15 15 30 30 45 30 15 

HI24 
65 

RE 15 25 25 35 35 35 50 60 
LE 20 25 25 30 40 35 50 65 

HI25 

65 

RE 15 10 15 30 45 50 75 85 
LE 20 15 20 40 45 55 80 85 
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APPENDIX E 

Table 5-3: individual data for hearing-impaired listeners percent correct key word identification as a 

function of asynchronous delay 

 Delay Conditions 
 0 ms 4 ms 8 ms 32 ms 
HI1 98 93.5 95.5 91.5 
HI2 87.5 82.5 86 82 
HI3 90.5 88.5 91.5 85.5 
HI4 95.5 97 98 97 
HI5 92.5 93.5 95 91.5 
HI6 91.5 87.5 89.5 88.5 
HI7 85.5 86.5 82.5 76 
HI8 97 97 96 96.5 
HI9 99 98.5 98 96 
HI10 90.5 91 89 85.5 
HI11 78 72 74 72 
HI12 91 91 89 83.5 
HI13 89 86 92.5 84 
HI14 90.5 90.5 88.5 88.5 
HI15 76.5 78.5 75.5 69.5 
HI16 84 88 83 78 
HI17 94.5 94 95 95 
HI18 89 91 86.5 87 
HI19 97.5 93 88.5 92.5 
HI20 87 85 88.5 85.5 
HI21 77 74.5 72 65.5 
HI22 81.5 81 79 74 
HI23 98.5 97 97.5 96.5 
HI24 91.5 90.5 92 89 
HI25 90.5 89 86.5 83.5 
HIGHLIGHTED PARTICIPANT NUMBER INDICATES THAT DATA SLOPE AS A 
FUNCTION OF INCREASING DELAY.  
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