17 research outputs found

    HPV vaccine decision making in pediatric primary care: a semi-structured interview study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite national recommendations, as of 2009 human papillomavirus (HPV) vaccination rates were low with < 30% of adolescent girls fully vaccinated. Research on barriers to vaccination has focused separately on parents, adolescents, or clinicians and not on the decision making process among all participants at the point of care. By incorporating three distinct perspectives, we sought to generate hypotheses to inform interventions to increase vaccine receipt.</p> <p>Methods</p> <p>Between March and June, 2010, we conducted qualitative interviews with 20 adolescent-mother-clinician triads (60 individual interviews) directly after a preventive visit with the initial HPV vaccine due. Interviews followed a guide based on published HPV literature, involved 9 practices, and continued until saturation of the primary themes was achieved. Purposive sampling balanced adolescent ages and practice type (urban resident teaching versus non-teaching). Using a modified grounded theory approach, we analyzed data with NVivo8 software both within and across triads to generate primary themes.</p> <p>Results</p> <p>The study population was comprised of 20 mothers (12 Black, 9 < high school diploma), 20 adolescents (ten 11-12 years old), and 20 clinicians (16 female). Nine adolescents received the HPV vaccine at the visit, eight of whom were African American. Among the 11 not vaccinated, all either concurrently received or were already up-to-date on Tdap and MCV4. We did not observe systematic patterns of vaccine acceptance or refusal based on adolescent age or years of clinician experience. We identified 3 themes: (1) Parents delayed, rather than refused vaccination, and when they expressed reluctance, clinicians were hesitant to engage them in discussion. (2) Clinicians used one of two strategies to present the HPV vaccine, either presenting it as a routine vaccine with no additional information or presenting it as optional and highlighting risks and benefits. (3) Teens considered themselves passive participants in decision making, even when parents and clinicians reported including them in the process.</p> <p>Conclusions</p> <p>Programs to improve HPV vaccine delivery in primary care should focus on promoting effective parent-clinician communication. Research is needed to evaluate strategies to help clinicians engage reluctant parents and passive teens in discussion and measure the impact of distinct clinician decision making approaches on HPV vaccine delivery.</p

    Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry

    No full text
    Biologically active peptides are synthesized from inactive pre-proproteins or peptide precursors by the sequential actions of processing enzymes. Proprotein convertases cleave the precursor at pairs of basic amino acids, which are then removed from the carboxyl terminus of the generated fragments by a specific carboxypeptidase. Caenorhabditis elegans strains lacking proprotein convertase EGL-3 display a severely impaired neuropeptide profile (Husson et al. 2006, J. Neurochem.98, 1999-2012). In the present study, we examined the role of the C. elegans carboxypeptidase E orthologue EGL-21 in the processing of peptide precursors. More than 100 carboxy-terminally extended neuropeptides were detected in egl-21 mutant strains. These findings suggest that EGL-21 is a major carboxypeptidase involved in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors. The impaired peptide profile of egl-3 and egl-21 mutants is reflected in some similar phenotypes. They both share a severe widening of the intestinal lumen, locomotion defects, and retention of embryos. In addition, egl-3 animals have decreased intestinal fat content. Taken together, these results suggest that EGL-3 and EGL-21 are key enzymes for the proper processing of neuropeptides that control egg-laying, locomotion, fat storage and the nutritional status.status: publishe

    Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy.

    No full text
    BACKGROUND:Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS:Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS:EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS:These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy
    corecore