29 research outputs found

    Long-Term Optical Observations Of Two Lmxbs: Uw Crb (=Ms 1603+260) And V1408 Aql (=4U 1957+115)

    Get PDF
    We present new optical photometry of two low-mass X-ray binary stars, UW CrB (MS 1603+260) and V1408 Aql (4U 1957+115). UW CrB is an eclipsing binary and we refine its eclipse ephemeris and measure an upper limit to the rate of change of its orbital period, vertical bar P vertical bar < 4.2 x 10(-11) (unitless). The light curve of UW CrB shows optical counterparts of type I X-ray bursts. We tabulate the times, orbital phases, and fluences of 33 bursts and show that the optical flux in the bursts comes primarily from the accretion disk, not from the secondary star. The new observations are consistent with a model in which the accretion disk in UW CrB is asymmetric and precesses in the prograde direction with a period of similar to 5.5 days. The light curve of V1408 Aql has a low-amplitude modulation at its 9.33 hr orbital period. The modulation remained a nearly pure sine curve in the new data as it was in 1984 and 2008, but its mean amplitude was lower, 18% against 23% in the earlier data. A model in which the orbital modulation is caused by the varying aspect of the heated face of the secondary star continues to give an excellent fit to the light curve. We derive a much improved orbital ephemeris for the system.NSF 0958783Astronom

    Bolometric and UV Light Curves of Core-Collapse Supernovae

    Get PDF
    The Swift UV-Optical Telescope (UVOT) has been observing Core-Collapse Supernovae (CCSNe) of all subtypes in the UV and optical since 2005. We present here 50 CCSNe observed with the Swift UVOT, analyzing their UV properties and behavior. Where we have multiple UV detections in all three UV filters (\lambda c = 1928 - 2600 \AA), we generate early time bolometric light curves, analyze the properties of these light curves, the UV contribution to them, and derive empirical corrections for the UV-flux contribution to optical-IR based bolometric light curves

    2MASS J05162881+2607387: A New Low-Mass Double-Lined Eclipsing Binary

    Full text link
    We show that the star known as 2MASS J05162881+2607387 (hereafter J0516) is a double-lined eclipsing binary with nearly identical low-mass components. The spectroscopic elements derived from 18 spectra obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope during the Fall of 2005 are K_1=88.45 +/- 0.48 km/s and K_2=90.43 +/- 0.60 km/s, resulting in a mass ratio of$q=K_1/K_2 = 0.978 +/- 0.018 and minimum masses of M_1 sin^{3}i=0.775 +/- 0.016 solar masses and M_2 sin^{3}i=0.759 +/- 0.012 solar masses, respectively. We have extensive differential photometry of J0516 obtained over several nights between 2004 January-March (epoch 1) and 2004 October-2005 January plus 2006 January (epoch 2) using the 1m telescope at the Mount Laguna Observatory. The source was roughly 0.1 mag brighter in all three bandpasses during epoch 1 when compared to epoch 2. Also, phased light curves from epoch 1 show considerable out-of-eclipse variability, presumably due to bright spots on one or both stars. In contrast, the phased light curves from epoch 2 show little out-of-eclipse variability. The light curves from epoch 2 and the radial velocity curves were analyzed using our ELC code with updated model atmospheres for low-mass stars. We find the following: M_1=0.787 +/- 0.012 solar masses, R_1=0.788 +/- 0.015 solar radii, M_2=0.770 +/- 0.009 solar masses, and R_2=0.817 +/- 0.010 solar radii. The stars in J0516 have radii that are significantly larger than model predictions for their masses, similar to what is seen in a handful of other well-studied low-mass double-lined eclipsing binaries. We compiled all recent mass and radius determinations from low-mass binaries and determine an empirical mass-radius relation of the form R = 0.0324 + 0.9343M + 0.0374M^2, where the quantities are in solar units.Comment: 16 pages, 10 figures (Figure 1 has degraded quality), to appear in Ap

    The Optical Orbital Light Curve of the Low-mass X-ray Binary V1408 Aquilae (= 4U 1957+115)

    Full text link
    V1408 Aql (= 4U 1957+115) is a low-mass X-ray binary with an orbital period near 9.3 hr, whose compact star is a black hole candidate. The system shows a large-amplitude orbital photometric modulation at optical wavelengths. We have obtained new optical photometry of V1408 Aql from which we derive the orbital light curve and an improved orbital ephemeris. We show that the orbital light curve can be reproduced by a model in which the accretion disk around the compact star is thin, axisymmetric, and uneclipsed. The secondary star is heated by X-rays from the compact star and the accretion disk. The orbital modulation is produced entirely by the changing aspect of the irradiated secondary star with orbital phase. Because the system does not eclipse, the fits of the model light curves are insensitive to the orbital parameters, allowing a wide range of orbital inclinations and mass ratios.Comment: 26 pages, 9 figures (3 in color), To appear as ApJ, 730, 43, 201

    A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution

    Get PDF
    We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB afterglow catalog. The second catalog is constructed from a database containing over 120,000 independent UVOT observations of 538 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi, and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs discovered from 2005 Jan 17 to 2010 Dec 25. Using photometric information in three UV bands, three optical bands, and a `white' or open filter, the data are optimally co-added to maximize the number of detections and normalized to one band to provide a detailed light curve. The catalog provides positional, temporal, and photometric information for each burst, as well as Swift Burst Alert Telescope (BAT) and X-Ray Telescope (XRT) GRB parameters. Temporal slopes are provided for each UVOT filter. The temporal slope per filter of almost half the GRBs are fit with a single power-law, but one to three breaks are required in the remaining bursts. Morphological comparisons with the X-ray reveal that approximately 75% of the UVOT light curves are similar to one of the four morphologies identified by Evans et al. (2009). The remaining approximately 25% have a newly identified morphology. For many bursts, redshift and extinction corrected UV/optical spectral slopes are also provided at 2000, 20,000, and 200,000 seconds.Comment: 44 pages, 14 figures, to be published in Astrophysical Journal Supplementa

    Supernovae Shock Breakout/Emergence Detection Predictions for a Wide-Field X-ray Survey

    Full text link
    There are currently many large-field surveys operational and planned including the powerful Vera C. Rubin Observatory Legacy Survey of Space and Time. These surveys will increase the number and diversity of transients dramatically. However, for some transients, like supernovae (SNe), we can gain more understanding by directed observations (e.g. shock breakout, γ\gamma-ray detections) than by simply increasing the sample size. For example, the initial emission from these transients can be a powerful probe of these explosions. Upcoming ground-based detectors are not ideally suited to observe the initial emission (shock emergence) of these transients. These observations require a large field-of-view X-ray mission with a UV follow up within the first hour of shock breakout. The emission in the first one hour to even one day provides strong constraints on the stellar radius and asymmetries in the outer layers of stars, the properties of the circumstellar medium (e.g. inhomogeneities in the wind for core-collapse SNe, accreting companion in thermonuclear SNe), and the transition region between these two. This paper describes a simulation for the number of SNe that could be seen by a large field of view lobster eye X-ray and UV observatory.Comment: 13 pages, 7 figures, submitted to Ap

    Optical and UV Light Curves of the Accretion Disk Corona Source 4U 1822-371

    Get PDF
    The eclipsing low-mass X-ray binary 4U is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectrograms of 4U with the Hubble Space Telescope and new V- and J-band light curves with the 1.3-m SMARTS telescope at CTIO. We present an updated ephemeris for the times of the optical/UV eclipses. Model light curves do not give acceptable fits to the UV eclipses unless the models include an optically-thick ADC.Comment: 3 pages, 2 figures, from A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environment

    The Structure of the Accretion Disk in the ADC X-Ray Binary 4U 1822-371 at Optical and Ultraviolet Wavelengths

    Get PDF
    The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel (ACS/SBC) on the Hubble Space Telescope (HST) and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system; and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s. We show that the disk has a vertically-extended, optically-thick component at optical wavelengths.This component extends almost to the edge of the disk and has a height equal to ~0.5 of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of a disk wind, not as the optical counterpart of the ADC. Like previous models of 4U 1822-371, ours needs a tall obscuring wall near the edge of the accretion disk, but we interpret the wall as a layer of cooler material at the base of the disk wind, not as a tall, luminous disk rim.Comment: 37 pages, 12 figures, submitted to Ap
    corecore