16 research outputs found

    Producción y caracterización de un modelo experimental de Cáncer Epitelial producido por cancerígenos químicos y radiación

    No full text
    Fil: Chimeno Zoth, Silvina Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Enhancement in the Therapeutic Efficacy of In Vivo BNCT Mediated by GB-10 with Electroporation in a Model of Oral Cancer

    Get PDF
    Boron neutron capture therapy (BNCT) combines preferential tumor uptake of 10B compounds and neutron irradiation. Electroporation induces an increase in the permeability of the cell membrane. We previously demonstrated the optimization of boron biodistribution and microdistribution employing electroporation (EP) and decahydrodecaborate (GB-10) as the boron carrier in a hamster cheek pouch oral cancer model. The aim of the present study was to evaluate if EP could improve tumor control without enhancing the radiotoxicity of BNCT in vivo mediated by GB-10 with EP 10 min after GB-10 administration. Following cancerization, tumor-bearing hamster cheek pouches were treated with GB-10/BNCT or GB-10/BNCT + EP. Irradiations were carried out at the RA-3 Reactor. The tumor response and degree of mucositis in precancerous tissue surrounding tumors were evaluated for one month post-BNCT. The overall tumor response (partial remission (PR) + complete remission (CR)) increased significantly for protocol GB-10/BNCT + EP (92%) vs. GB-10/BNCT (48%). A statistically significant increase in the CR was observed for protocol GB-10/BNCT + EP (46%) vs. GB-10/BNCT (6%). For both protocols, the radiotoxicity (mucositis) was reversible and slight/moderate. Based on these results, we concluded that electroporation improved the therapeutic efficacy of GB-10/BNCT in vivo in the hamster cheek pouch oral cancer model without increasing the radiotoxicity

    Boron biodistribution study in colorectal liver metastases patients in Argentina

    Get PDF
    Ex-situ BNCT for multifocal unresectable liver metastases employing whole or partial autograft techniques requires knowledge of boron concentrations in healthy liver and metastases following perfusion and immersion in Wisconsin solution (W), the procedure employed for organ preservation during ex-situ irradiation. Measurements of boron concentration in blood, liver and metastases following an intravenous infusion of BPA-F in five colorectal liver metastases patients scheduled for surgery were performed. Tissue samples were evaluated for boron content pre and post perfusion and immersion in W. Complementary histological studies were performed. The data showed a dose-dependent BPA uptake in liver, a boron concentration ratio liver/blood close to 1 and a wide spread in the metastases/liver concentration ratios in the range 0.8-3.6, partially attributable to histological variations between samples. Based on the boron concentrations and dose considerations (liver or =40 Gy-Eq) at the RA-3 thermal neutron facility (mean flux of about (6+/-1) x 10(9) n cm(-2)s(-1)), ex-situ treatment of liver metastases at RA-3 would be feasible.Fil: Cardoso Cúneo, Jorge Eduardo Carlos. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nievas, S.. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Pereira, M.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Schwint, Amanda Elena. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trivillin, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Pozzi, Emiliano César Cayetano. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Heber, Elisa Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Monti Hughes, Andrea. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sanchez, P.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Bumaschny, E.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Itoiz, María Elina. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Liberman, Susana Alcira. Comisión Nacional de Energía Atómica; Argentin

    Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels

    No full text
    Background. We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (SeqBNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. Material and Methods. Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (ThSeq-BNCT) or Seq-Beam Only (ThSeq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. Results. ThSeq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. Conclusion. ThSeq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control

    Electroporation optimizes the uptake of boron-10 by tumor for boron neutron capture therapy (BNCT) mediated by GB-10: a boron biodistribution study in the hamster cheek pouch oral cancer model

    No full text
    Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.Fil: Garabalino, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Olaiz, Nahuel Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Portu, Agustina Mariana. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saint Martin, Gisela. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Thorp, Silvia Inés. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; ArgentinaFil: Pozzi, Emiliano César Cayetano. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; ArgentinaFil: Curotto, Paula. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; ArgentinaFil: Itoiz, María E.. Universidad de Buenos Aires. Facultad de Odontología; ArgentinaFil: Monti Hughes, Andrea. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Colombo, Lucas Luis. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Nigg, David W.. Idaho National Laboratory; Estados UnidosFil: Trivillin, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Schwint, Amanda Elena. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Boron Neutron Capture Therapy (BNCT) Mediated by Maleimide-Functionalized Closo-Dodecaborate Albumin Conjugates (MID:BSA) for Oral Cancer: Biodistribution Studies and In Vivo BNCT in the Hamster Cheek Pouch Oral Cancer Model

    No full text
    Background: BNCT (Boron Neutron Capture Therapy) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Although p-boronophenylalanine (BPA) has been clinically used, new boron compounds are needed for the advancement of BNCT. Based on previous studies in colon tumor-bearing mice, in this study, we evaluated MID:BSA (maleimide-functionalized closo-dodecaborate conjugated to bovine serum albumin) biodistribution and MID:BSA/BNCT therapeutic effect on tumors and associated radiotoxicity in the hamster cheek pouch oral cancer model. Methods: Biodistribution studies were performed at 30 mg B/kg and 15 mg B/kg (12 h and 19 h post-administration). MID:BSA/BNCT (15 mg B/kg, 19 h) was performed at three different absorbed doses to precancerous tissue. Results: MID:BSA 30 mg B/kg protocol induced high BSA toxicity. MID:BSA 15 mg B/kg injected at a slow rate was well-tolerated and reached therapeutically useful boron concentration values in the tumor and tumor/normal tissue ratios. The 19 h protocol exhibited significantly lower boron concentration values in blood. MID:BSA/BNCT exhibited a significant tumor response vs. the control group with no significant radiotoxicity. Conclusions: MID:BSA/BNCT would be therapeutically useful to treat oral cancer. BSA toxicity is a consideration when injecting a compound conjugated to BSA and depends on the animal model studied

    Different oral cancer scenarios to personalize targeted therapy: Boron Neutron Capture Therapy translational studies

    No full text
    Boron neutron capture therapy (BNCT) is a targeted therapy, which consists of preferential accumulation of boron carriers in tumor followed by neutron irradiation. Each oral cancer patient has different risks of developing one or more carcinomas and/or oral mucositis induced after treatment. Our group proposed the hamster oral cancer model to study the efficacy of BNCT and associated mucositis. Translational studies are essential to the advancement of novel boron delivery agents and targeted strategies. Herein, we review our work in the hamster model in which we studied BNCT induced mucositis using three different cancerization protocols, mimicking three different clinical scenarios. The BNCT-induced mucositis increases with the aggressiveness of the carcinogenesis protocol employed, suggesting that the study of different oral cancer patient scenarios would help to develop personalized therapies.Fil: Monti Hughes, Andrea. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goldfinger, Jessica A.. Comisión Nacional de Energía Atómica; ArgentinaFil: Santa Cruz, Iara S.. Comisión Nacional de Energía Atómica; ArgentinaFil: Pozzi, Emiliano C.C.. Comisión Nacional de Energía Atómica; ArgentinaFil: Thorp, Silvia. Comisión Nacional de Energía Atómica; ArgentinaFil: Curotto, Paula. Comisión Nacional de Energía Atómica; ArgentinaFil: Garabalino, Marcela Alejandra. Comisión Nacional de Energía Atómica; ArgentinaFil: Itoiz, María E.. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Odontología; ArgentinaFil: Palmieri, Mónica Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Ramos, Paula. Comisión Nacional de Energía Atómica; ArgentinaFil: Heber, Elisa Mercedes. Comisión Nacional de Energía Atómica; ArgentinaFil: Aromando, Romina F.. Universidad de Buenos Aires. Facultad de Odontología; ArgentinaFil: Nigg, David W.. No especifíca;Fil: Koivunoro, Hanna. No especifíca;Fil: Trivillin, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Schwint, Amanda Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentin

    Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats

    Get PDF
    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks postirradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 ± 6.6 for Sham, 7.8 ± 4.1 for Beam only, 4.4 ± 5.6 for BPA-BNCT I and 0.45 ± 0.20 for BPABNCT II; tumor nodule weight was 750 ± 480 mg for Sham, 960 ± 620 mg for Beam only, 380 ± 720 mg for BPABNCT I and 7.3 ± 5.9 mg for BPA-BNCT II. The BPABNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.Fil: Pozzi, Emiliano César Cayetano. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; Argentina;Fil: Trivillin, Verónica Andrea. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Colombo, Lucas Luis. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina; Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología; Argentina;Fil: Monti Hughes, Andrea. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Thorp, Silvia Inés. Comisión Nacional de Energía Atómica; Argentina;Fil: Cardoso, Jorge E.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología; Argentina;Fil: Garabalino, Marcela Alejandra. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Molinari, Ana Julia. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Heber, Elisa Mercedes. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Curotto, Paula. Comisión Nacional de Energía Atómica; Argentina;Fil: Miller, Marcelo Eduardo. Comisión Nacional de Energía Atómica; Argentina;Fil: Itoiz, Maria Elina. Universidad de Buenos Aires. Facultad de Odontología; Argentina; Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Aromando, Romina Flavia. Universidad de Buenos Aires. Facultad de Odontología; Argentina; Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina;Fil: Nigg, David W.. Idaho National Laboratory; Estados Unidos de América;Fil: Schwint, Amanda Elena. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
    corecore