92 research outputs found

    A socio-ecological approach for identifying and contextualising spatial ecosystem-based adaptation priorities at the sub-national level

    Get PDF
    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world

    Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the southern pied babbler Turdoides bicolor

    Get PDF
    incubation in birds. Understanding the mechanisms driving these impacts requires comprehensive knowledge of animal physiology and behaviour under natural conditions. We used a novel combination of a non-invasive doubly labelled water (DLW) technique, nest temperature data and field-based behaviour observations to test effects of temperature, rainfall and group size on physiology and behaviour during incubation in southern pied babblers Turdoides bicolor, a cooperatively breeding passerine endemic to the arid savanna regions of southern Africa. The proportion of time that clutches were incubated declined as air temperatures increased, a behavioural pattern traditionally interpreted as a benefit of ambient incubation. However, we show that (i) clutches had a <50% chance of hatching when exposed to daily maximum air temperatures of >35.3◦C; (ii) pied babbler groups incubated their nests almost constantly (99% of daylight hours) except on hot days; (iii) operative temperatures in unattended nests frequently exceeded 40.5◦C, above which bird embryos are at risk of death; (iv) pied babblers incubating for long periods of time failed to maintain water balance on hot days; and (v) pied babblers from incubating groups lost mass on hot days. These results suggest that pied babblers might leave their nests during hot periods to lower the risk of dehydration associated with prolonged incubation at high operative temperatures. As mean air temperatures increase and extreme heat events become more frequent under climate change, birds will likely incur ever greater thermoregulatory costs of incubation, leading to compromised nest attendance and increased potential for eggs to overheat, with implications for nest success and, ultimately, population persistence.Australian Research Council, BBSRC David Phillips Fellowship, e British Ornithologists’ Union, DST-NRF Centre of Excellence, Oppenheimer Memorial Trust and University of Cape Town and the National Research Foundation of South Africa.http://conphys.oxfordjournals.orgdm2022Zoology and Entomolog

    Non-invasive monitoring of physiological stress in an afrotropical arid-zone passerine bird, the southern pied babbler

    Get PDF
    Using faecal matter to monitor stress levels in animals non-invasively is a powerful technique for elucidating the effects of biotic and abiotic stressors on free-living animals. To validate the use of droppings for measuring stress in southern pied babblers (Turdoides bicolor) we performed an ACTH challenge on captive individuals and determined the effect of temporary separation from their social group on their faecal glucocorticoid metabolite (fGCM) concentration. Additionally, we compared fGCM concentrations of captive babblers to those of wild conspecifics and examined the effects of dominance rank on fGCM concentration. We found droppings to be a suitable matrix for measuring physiological stress in babblers and that individual separation from the group caused an increase in fGCM levels. In addition, babblers temporarily held in captivity had substantially higher fGCM concentrations than wild individuals, indicating that babblers kept in captivity experience high levels of stress. In wild, free-living individuals, dominant males showed the highest levels of stress, suggesting that being the dominant male of a highly territorial social group is stressful. Non-invasive sampling allows field-based researchers to reduce disturbance related to monitoring adrenocortical function, thereby avoiding artificially increasing circulating corticosterone concentration as it is not necessary to physically restrain study animals.The National Research Foundation of South Africa (Grant Number 110506), and the DST-NRF Centre of Excellence at the FitzPatrick Institute. The Kalahari Research Centre was financed by the Universities of Cambridge and Zurich, the MAVA Foundation, ERC (Grant No. 294494 to Tim Clutton‐Brock).http://www.elsevier.com/locate/ygcen2020-05-15hj2020Mammal Research InstituteZoology and Entomolog

    Non-invasive measurement of metabolic rates in wild, free-living birds using doubly labelled water

    Get PDF
    Please read abstract in the article.DST-NRF Centre of Excellence at the FitzPatrick Institute for African Ornithology; National Research Foundation of South Africa, Grant/Award Number: 110506; Universities of Cambridge and Zurich; MAVA Foundation, ERC, Grant/Award Number: 294494; University of Pretoria; The Oppenheimer Memorial Trust, Grant/Award Number: OMT 20747/01http://wileyonlinelibrary.com/journal/fechj2020Mammal Research InstituteZoology and Entomolog

    Hot days are associated with short-term adrenocortical responses in a southern African arid-zone passerine bird

    Get PDF
    Relatively little effort has been directed towards elucidating the role of physiological stress pathways in mediating avian responses to global heating. For free-ranging southern pied babblers, Turdoides bicolor, daily maximum air temperatures (Tmax) between ∼35 and ∼40°C result in reduced foraging efficiency, loss of body mass and compromised breeding success. We tested the hypothesis that very hot days are experienced as stressors by quantifying relationships between Tmax and faecal glucocorticoid metabolite (fGCM) levels in naturally excreted droppings. On days when Tmax<38°C, fGCM levels were independent of Tmax (mean±s.d. 140.25±56.92 ng g−1 dry mass). At Tmax>38°C, however, fGCM levels increased linearly with Tmax and averaged 190.79±70.13 ng g−1 dry mass. The effects of Tmax on fGCM levels did not carry over to the following morning, suggesting that very hot days are experienced as acute stressors.The DSI-NRF Centre of Excellence at the FitzPatrick Institute for African Ornithology, the University of Cape Town, the Ernest Oppenheimer Memorial Trust, the British Ornithologists’ Union, the Australian Research Council and the National Research Foundation of South Africa.http://jeb.biologists.org2022-05-15am2022Mammal Research InstituteZoology and Entomolog

    Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific

    Get PDF
    Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals

    PDE8 Regulates Rapid Teff Cell Adhesion and Proliferation Independent of ICER

    Get PDF
    BACKGROUND: Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs) is a prerequisite for effector T (Teff) cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS: We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP) activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER). Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE: Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp
    corecore