34 research outputs found

    Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs

    Get PDF
    Copyright © 2015 Amanda L. Aloia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection

    Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs

    Get PDF
    One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection

    Annual Feedback Is an Effective Tool for a Sustained Increase in Calcium Intake among Older Women

    Get PDF
    We aimed to optimize calcium intake among the 2,000+ older women taking part in the Vital D study. Calcium supplementation was not included in the study protocol. Our hypothesis was that annual feedback of calcium intake and informing women of strategies to improve calcium intake can lead to a sustained increase in the proportion of women who consume adequate levels of the mineral. Calcium intake was assessed on an annual basis using a validated short food frequency questionnaire (FFQ). Supplemental calcium intake was added to the dietary estimate. Participants and their nominated doctor were sent a letter that the participant’s estimated daily calcium intake was adequate or inadequate based on a cutoff threshold of 800 mg/day. General brief statements outlining the importance of an adequate calcium intake and bone health were included in all letters. At baseline, the median daily consumption of calcium was 980 mg/day and 67 percent of 1,951 participants had calcium intake of at least 800 mg per day. Of the 644 older women advised of an inadequate calcium intake at baseline (<800 mg/day), 386 (60%) had increased their intake by at least 100 mg/day when re-assessed twelve months later. This desirable change was sustained at 24 months after baseline with almost half of these women (303/644) consuming over 800 mg calcium per day. This study devised an efficient method to provide feedback on calcium intake to over 2,000 older women. The improvements were modest but significant and most apparent in those with a low intake at baseline. The decreased proportion of these women with an inadequate intake of calcium 12- and 24-months later, suggests this might be a practical, low cost strategy to maintain an adequate calcium intake among older women

    Investigation of sphingosine kinase 1 in interferon responses during dengue virus infection

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Dengue virus (DENV) regulates sphingosine kinase (SK)-1 activity and chemical inhibition of SK1 reduces DENV infection. In primary murine embryonic fibroblasts (pMEFs) lacking SK1 however, DENV infection is enhanced and this is associated with induction of normal levels of interferon beta (IFN-β) but reduced levels of IFN-stimulated genes (ISGs). We have further investigated this link between SK1 and type I IFN responses. DENV infection downregulates cell-surface IFN-alpha receptor (IFNAR)1 in both wild-type (WT) and SK1−/− pMEF, but, consistent with poor ISG responses, shows reduced induction of phosphorylated (p)-STAT1 and key IFN regulatory factors (IRF)1 and −7 in SK1−/− pMEF. Direct IFN stimulation induced ISGs (viperin, IFIT1), CXCL10, IRF1 and −7 and p-STAT1. Responses, however, were significantly reduced in SK1−/− pMEF, except for IFN-stimulated CXCL10 and IRF7. Poor IFN responses in SK1−/− pMEF were associated with a small reduction in basal cell-surface IFNAR1 and IRF1 mRNA in uninfected SK1−/− compared with WT pMEF. In contrast, treatment of cells with the SK1 inhibitor, SK1-I or expression of an inhibitory SK1 short hairpin RNA (shRNA), both of which reduce DENV infection, does not alter basal IRF1 mRNA or affect type I IFN stimulation of p-STAT1. Thus, cells genetically lacking SK1 can induce many responses normally following DENV infection, but have adaptive changes in IFNAR1 and IRF1 that compromise DENV-induced type I IFN responses. This suggests a biological link between SK1 and IFN-stimulated pathways. Other approaches to reduce SK1 activity, however, do not influence these important antiviral pathways but reduce infection and may be useful antiviral strategies

    Identification of Replication Competent Murine Gammaretroviruses in Commonly Used Prostate Cancer Cell Lines

    Get PDF
    A newly discovered gammaretrovirus, termed XMRV, was recently reported to be present in the prostate cancer cell line CWR22Rv1. Using a combination of both immunohistochemistry with broadly-reactive murine leukemia virus (MLV) anti-sera and PCR, we determined if additional prostate cancer or other cell lines contain XMRV or MLV-related viruses. Our study included a total of 72 cell lines, which included 58 of the 60 human cancer cell lines used in anticancer drug screens and maintained at the NCI-Frederick (NCI-60). We have identified gammaretroviruses in two additional prostate cancer cell lines: LAPC4 and VCaP, and show that these viruses are replication competent. Viral genome sequencing identified the virus in LAPC4 and VCaP as nearly identical to another known xenotropic MLV, Bxv-1. We also identified a gammaretrovirus in the non-small-cell lung carcinoma cell line EKVX. Prostate cancer cell lines appear to have a propensity for infection with murine gammaretroviruses, and we propose that this may be in part due to cell line establishment by xenograft passage in immunocompromised mice. It is unclear if infection with these viruses is necessary for cell line establishment, or what confounding role they may play in experiments performed with these commonly used lines. Importantly, our results suggest a need for regular screening of cancer cell lines for retroviral “contamination”, much like routine mycoplasma testing

    Studies on the Restriction of Murine Leukemia Viruses by Mouse APOBEC3

    Get PDF
    APOBEC3 proteins function to restrict the replication of retroviruses. One mechanism of this restriction is deamination of cytidines to uridines in (−) strand DNA, resulting in hypermutation of guanosines to adenosines in viral (+) strands. However, Moloney murine leukemia virus (MoMLV) is partially resistant to restriction by mouse APOBEC3 (mA3) and virtually completely resistant to mA3-induced hypermutation. In contrast, the sequences of MLV genomes that are in mouse DNA suggest that they were susceptible to mA3-induced deamination when they infected the mouse germline. We tested the possibility that sensitivity to mA3 restriction and to deamination resides in the viral gag gene. We generated a chimeric MLV in which the gag gene was from an endogenous MLV in the mouse germline, while the remainder of the viral genome was from MoMLV. This chimera was fully infectious but its response to mA3 was indistinguishable from that of MoMLV. Thus, the Gag protein does not seem to control the sensitivity of MLVs to mA3. We also found that MLVs inactivated by mA3 do not synthesize viral DNA upon infection; thus mA3 restriction of MLV occurs before or at reverse transcription. In contrast, HIV-1 restricted by mA3 and MLVs restricted by human APOBEC3G do synthesize DNA; these DNAs exhibit APOBEC3-induced hypermutation

    Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago

    Get PDF
    Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6&nbsp;years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P &lt; 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100&nbsp;years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception

    Thermostabilization of the Neurotensin Receptor NTS1

    Get PDF
    Abstract not availableYoko Shibata, Jim F. White, Maria J. Serrano-Vega, Francesca Magnani, Amanda L. Aloia, Reinhard Grisshammer and Christopher G. Tat
    corecore