42 research outputs found
Thermodynamics of Black Holes in Two (and Higher) Dimensions
A comprehensive treatment of black hole thermodynamics in two-dimensional
dilaton gravity is presented. We derive an improved action for these theories
and construct the Euclidean path integral. An essentially unique boundary
counterterm renders the improved action finite on-shell, and its variational
properties guarantee that the path integral has a well-defined semi-classical
limit. We give a detailed discussion of the canonical ensemble described by the
Euclidean partition function, and examine various issues related to stability.
Numerous examples are provided, including black hole backgrounds that appear in
two dimensional solutions of string theory. We show that the Exact String Black
Hole is one of the rare cases that admits a consistent thermodynamics without
the need for an external thermal reservoir. Our approach can also be applied to
certain higher-dimensional black holes, such as Schwarzschild-AdS,
Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference
Charged BTZ-like Black Holes in Higher Dimensions
Motivated by many worthwhile paper about (2 + 1)-dimensional BTZ black holes,
we generalize them to to (n + 1)-dimensional solutions, so called BTZ-like
solutions. We show that the electric field of BTZ-like solutions is the same as
(2 + 1)-dimensional BTZ black holes, and also their lapse functions are
approximately the same, too. By these similarities, it is also interesting to
investigate the geometric and thermodynamics properties of the BTZ-like
solutions. We find that, depending on the metric parameters, the BTZ-like
solutions may be interpreted as black hole solutions with inner (Cauchy) and
outer (event) horizons, an extreme black hole or naked singularity. Then, we
calculate thermodynamics quantities and conserved quantities, and show that
they satisfy the first law of thermodynamics. Finally, we perform a stability
analysis in the canonical ensemble and show that the BTZ-like solutions are
stable in the whole phase space.Comment: 5 pages, two column format, one figur
Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation
A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses
Distributed Generation (DG) placement on the basis of minimization of losses and maximization of system voltage stability are two different approaches, discussed in research. In the new proposed algorithm, a multi-objective approach is used to combine the both approaches together. Minimization of power losses and maximization of voltage stability due to finding weakest voltage bus as well as due to weakest link in the system are considered in the fitness function. Particle Swarm Optimization (PSO) algorithm is used in this paper to solve the multi-objective problem. This paper will also compare the propose method with existing DG placement methods. From results, the proposed method is found more advantageous than the previous work in terms of voltage profile improvement, maximization of system loadability, reduction in power system losses and maximization of bus and line voltage stability. The results are validated on 12-bus, 30-bus, 33-bus and 69-bus radial distribution networks and also discussed in detailed
Optimal placement and sizing of a DG based on a new power stability index and line losses
This paper proposes a new algorithm for Distributed Generator (DG) placement and sizing for distribution systems based on a novel index. The index is developed considering stable node voltages referred as power stability index (PSI). A new analytical approach is adopted to visualize the impact of DG on system losses, voltage profile and voltage stability. The proposed algorithm is tested on 12-bus, modified 12-bus and 69-bus radial distribution networks. The test results are also compared and found to be in close agreement with the existing Golden Section Search (GSS) algorithm
Optimum capacitor placement and sizing for distribution system based on an improved voltage stability index
With the advent of restructuring in power system and the recent power blackouts, the importance of reactive power support to the system has increased. Shunt capacitor is normally placed in the distribution system for reactive power support and voltage stability. In this paper, an index is proposed considering the effect of shunt capacitor on system voltage stability and referred as Reactive power compensation based Voltage Stability Index (RVSI). The index is based on finding the most sensitive voltage bus in the distribution system. An algorithm is also proposed, based on RVSI, for optimum shunt capacitor placement in the distribution system. The proposed algorithm is tested on 12-bus, 33-bus and 69-bus radial distribution networks. The test results are also compared and found in close agreement with the existing Golden Section Search (GSS) algorithm
Analysis of the performance of domestic lighting lamps
The power crisis problem is getting worse in the developing countries. Measures are being taken to overcome the power shortage problem by efficiently utilizing the available power. Replacement of high-power consumption lamps with energy efficient lamps is also among these steps. This paper presents a detailed comparative analysis between domestic lighting lamps (DLLs) use for producing artificial light. DLLs include incandescent lamp (IL), fluorescent lamp (FL) and compact fluorescent lamp (CFL). Light emitting diodes (LED) based lamp technology is relatively new in comparison with conventional incandescent and discharge lamps. However, the present study will also cover the LED lamps. Power quality based experiments have been conducted on DLLs in Power System Laboratory and power consumption based calculations are carried out using the lighting design software DIALux. The result shows that with the current technology, the use of FL and LED lamp is beneficial for utility as well as for consumer. However, with the current pace in the development of LED technology, it is possible LED lamps will lead the lighting market in the near future. The paper has also presented the uncertainties that exist in lighting market and proposed the guidelines that will help in making future energy policy
Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem
This paper presents a new algorithm for network reconfiguration based on maximization of system loadability. Bifurcation theorem known as Continuation Power Flow (CPF) theorem and radial distribution load flow analysis are used to find the maximum loadability point. Network reconfiguration results are also compared with existing technique proposed in literature. In the proposed method, to find the optimum tie-switch position, a Discrete Artificial Bee Colony (DABC) approach is applied. Graph theory is used to ensure the radiality of the system. The proposed algorithm is tested on 33-bus and 69-bus radial distribution networks, each having 5-tie switches. The result shows that using the proposed method the kVA margin to maximum loading (KMML) increases, overall voltage profile also improved and the distribution system can handle more connected load (kVA) without violating the voltage and line current constraints. Results further show that the voltage limit is an important factor than the line current constraints in adding further load to the buses