284 research outputs found

    Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Get PDF
    Adenovirus (Ad) based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1) Ad-capsid-display of specific inhibitors or ligands; (2) covalent modifications of the entire Ad vector capsid moiety; (3) the use of tissue specific promoters and local administration routes; (4) the use of genome modified Ads; and (5) the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies

    Retardation of atherosclerosis in immunocompetent apolipoprotein (apo) E-deficient mice followingliver-directed administration of a [E1-, E3-,polymerase-] adenovirus vector containing the elongation factor-1a promoter driving expression of human apoE cDNA

    Get PDF
    Although gene transfer of human apolipoprotein E (apoE), a 34-kDa circulating glycoprotein, to the liver of apoEdeficient(apoE-/-) mice using recombinant adenoviral vectors (rAd) is antiatherogenic, its full therapeutic potentialhas yet to be realized. First generation vectors led to immune clearance of transduced hepatocytes, while animproved vector with adenovirus regions E1, E3 and DNA polymerase deleted also had transient effects due tocellular shutdown of the cytomegalovirus (CMV) promoter. Here, we have studied an alternative promoter from thecellular elongation factor 1a (EF-1a) gene, injecting 6-8 week old apoE-/- mice intravenously with 2x1010 virusparticles (vp) of the [E1-, E3-, polymerase-] rAd vector Ad-EF1·-apoE. Plasma apoE levels were low (18-55 ng/ml)and failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. By contrast, thehyperlipidaemic phenotype of apoE-/- mice treated with Ad-CMV-apoE (2x1010 vp) was transiently normalized.Nevertheless, at termination (265 days) the aortic lesion areas in animals given Ad-EF1·-apoE were significantlyreduced by 15% (P<0.05) compared to untreated animals, a decrease approaching that in Ad-CMV-apoE-treatedmice (23%; P<0.02). Importantly, the attenuation of apoE transgene expression noted with the CMV promoter wasabsent with the EF-1a promoter, which gave relatively sustained, albeit low, levels of plasma apoE throughout thestudy period

    Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    Get PDF
    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general

    A New Adenovirus Based Vaccine Vector Expressing an Eimeria tenella Derived TLR Agonist Improves Cellular Immune Responses to an Antigenic Target

    Get PDF
    Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses

    Dystrophin expression in muscle following gene transfer with a fully deleted ("Gutted") adenovirus is markedly improved by Trans-acting adenoviral gene products

    Get PDF
    Helper-dependent adenoviruses (HDAd) are Ad vectors lacking all or most viral genes. They hold great promise for gene therapy of diseases such as Duchenne muscular dystrophy (DMD), because they are less immunogenic than E1/E3-deleted Ad (first-generation Ad or FGAd) and can carry the full-length (Fl) dystrophin (dys) cDNA (12 kb). We have compared the transgene expression of a HDAd (HDAdCMVDysFl) and a FGAd (FGAdCMV-dys) in cell culture (HeLa, C2C12 myotubes) and in the muscle of mdx mice (the mouse model for DMD). Both vectors encoded dystrophin regulated by the same cytomegalovirus (CMV) promoter. We demonstrate that the amount of dystrophin expressed was significantly higher after gene transfer with FGAdCMV-dys compared to HDAdCMVDysFl both in vitro and in vivo. However, gene transfer with HDAdCMVDysFl in the presence of a FGAd resulted in a significant increase of dystrophin expression indicating that gene products synthesized by the FGAd increase, in trans, the amount of dystrophin produced. This enhancement occurred in cell culture and after gene transfer in the muscle of mdx mice and dystrophic golden retriever (GRMD) dogs, another animal model for DMD. The E4 region of Ad is required for the enhancement, because no increase of dystrophin expression from HDAdCMVDysFl was observed in the presence of an E1/E4-deleted Ad in vitro and in vivo. The characterization of these enhancing gene products followed by their inclusion into an HDAd may be required to produce sufficient dystrophin to mitigate the pathology of DMD by HDAd-mediated gene transfer

    Kinetin riboside and its ProTides activate the Parkinson's disease associated PTEN-induced putative kinase 1 (PINK1) independent of mitochondrial depolarization

    Get PDF
    Since loss of function mutations of PINK1 lead to early-onset Parkinson’s disease, there has been growing interest in the discovery of small molecules that amplify the kinase activity of PINK1. We herein report the design, synthesis, serum stability and hydrolysis of four kinetin riboside ProTides. These ProTides, along with kinetin riboside, activated PINK1 in cells independent of mitochondrial depolarization. This highlights the potential of modified nucleosides and their phosphate prodrugs as treatments for neurodegenerative diseases

    Comparative Analysis of Acid Sphingomyelinase Distribution in the CNS of Rats and Mice Following Intracerebroventricular Delivery

    Get PDF
    Niemann-Pick A (NPA) disease is a lysosomal storage disorder (LSD) caused by a deficiency in acid sphingomyelinase (ASM) activity. Previously, we reported that biochemical and functional abnormalities observed in ASM knockout (ASMKO) mice could be partially alleviated by intracerebroventricular (ICV) infusion of hASM. We now show that this route of delivery also results in widespread enzyme distribution throughout the rat brain and spinal cord. However, enzyme diffusion into CNS parenchyma did not occur in a linear dose-dependent fashion. Moreover, although the levels of hASM detected in the rat CNS were determined to be within the range shown to be therapeutic in ASMKO mice, the absolute amounts represented less than 1% of the total dose administered. Finally, our results also showed that similar levels of enzyme distribution are achieved across rodent species when the dose is normalized to CNS weight as opposed to whole body weight. Collectively, these data suggest that the efficacy observed following ICV delivery of hASM in ASMKO mice could be scaled to CNS of the rat

    A conceptual framework for invasion in microbial communities

    Get PDF
    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process
    corecore