8 research outputs found

    Spatial Distribution of Radiometric and Dosimetric Parameters in Soil Samples from Selected Areas in Bayelsa State, Nigeria

    Get PDF
    Radiation from radioactive materials/radionuclides in the environment enhanced by anthropogenic activities is presently of a great concern globally. The objective of this study is to determine the radiometric and dosimetric parameters from soil samples collected randomly from the study area of Bayelsa State, Nigeria. The samples were prepared using standard methods and analyzed with a high resolution Hyperpure Germanium Detector configuration (HPGe). The results showed the clay samples to have higher activity concentration to the sands samples with activity concentration of clay samples ranging between 68.99±9.05 –189, 42±21.11Bq/kg and the sand samples with activity concentration range of 17.95±5.87 – 38.59±7.43Bq/kg. The activity concentration spatial distribution map in clay lithologies showed 2 peak values trending north-west, while the sand lithology showed a single peak central distribution. The result also showed the values of the absorbed doses with the 8 clay samples values ranging between 59.09 - 155.25nGy/h and sand samples values between 17.90 – 33.92nGy/h. The spatial distribution of the dose showed 2 peak central distribution in clay samples and north-east trending distribution of high peak values for samples with sand lithologies.  In addition, the results showed an effective absorbed dose of range of 0.235-0.0616mSv/y for samples with clay lithology and 0.0071-0.0135mSv/y for samples with sand lithology The activity concentration of all the samples studied are below the 1000Bq/kg international reference limit  for Radium 226, Thorium 232, uranium 238 and 10,000Bq/kg for potassium 40. The absorbed dose rate and annual effective absorbed dose are also below the international reference limits published by ICRP, 2007 and UNSCEAR, 2000 publications. Also, effective activity maximum limit of 370Bq/kg for input raw materials for public building is not exceeded

    Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) Seedlings

    No full text
    The effect of soil polluted by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi seedlings was analyzed at different times after contamination of the soil. The experiments were conducted under greenhouse conditions, with four treatments and five repetitions. The four treatments included: soil contaminated 30 (T30), 90 (T90) or 180 (T180) days before planting as well as a non-polluted soil (T0) (control). Soil saturated to 50% of its maximum retention capacity (MRC) was contaminated with diesel oil at a rate of 92.4 mL per kg. The germination rate and germination speed index (GSI) were significantly affected only in T30. The development of the plants was affected significantly in all the treatments, with reductions of biomass and eophyll area. It could be concluded that diesel oil significantly affected the germination, GSI and seedling growth of S. terebinthifolius, but the toxic effect decreased over the time

    BIBLIOGRAPHY OF COMPARATIVE AND VETERINARY DERMATOLOGY. Part I

    No full text

    Nanoprobiotics: when technology meets gut health

    Get PDF
    Nanotechnology is a fast-rising industry not defined by a single field of research, but as the convergence of disciplines, such as chemistry, biology, physics, mathematics, and engineering, which exploits the benefits of nanoscale dimensions and characteristics for application in the macroworld. Current applications vary widely from nanorobotic industry to simple household items. However, the combination of such phenomena with probiotic science, another emerging and potentially promising area for the prevention and treatment of several human gastrointestinal and extraintestinal disorders using beneficial microorganisms, gives birth to “nanoprobiotics,” a field that focuses on the application of nanoscience into the probiotic-related world. In this chapter, we will navigate through the basic nanotech and probiotic knowledge and the current technologies employed with success for probiotic delivery and, ultimately, discuss what possibilities lie ahead in the nanoprobiotic future.info:eu-repo/semantics/publishedVersio
    corecore